Author(s):
Rana Zainuddin, Geeta P. Darekar
Email(s):
geetadarekar5@gmail.com
DOI:
10.52711/0975-4385.2025.00007
Address:
Rana Zainuddin1, Geeta P. Darekar2
1Associate Professor, Department of Quality Assurance, Y. B. Chavan College of Pharmacy, Rauza Bagh, Aurangabad - 431001, Maharashtra, India.
2Y. B. Chavan College of Pharmacy, Rauza Bagh, Aurangabad - 431001, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 1,
Year - 2025
ABSTRACT:
Today, one of the most challenging public health issues is diabetes mellitus. Despite the availability of therapeutic medications, they exhibit several limitations. Given the escalating prevalence and fatality rates, there is a pressing need for more potent therapeutic drugs in clinical treatment. Mangiferin, a polyphenol and natural substance, offers a wide array of beneficial pharmacological properties. However, its applicability in research and clinical settings is hampered by its membership in the BCS class IV due to weak water solubility, poor fat solubility, and low bioavailability. Addressing these limitations is crucial. Our comprehensive review delves into strategies for enhancing mangiferin's solubility by modifying its dosage form. Additionally, we highlight preliminary findings, aiming to provide a valuable roadmap for the future application of mangiferin in diabetes management. It is conceivable that in the near future, mangiferin could serve as an adjuvant medication for diabetes mellitus treatment and its associated complications.
Cite this article:
Rana Zainuddin, Geeta P. Darekar. Phytosomes: An Ideal way to Enhance Bioavailability of Mangiferin. Research Journal of Pharmacognosy and Phytochemistry. 2025; 17(1):38-4. doi: 10.52711/0975-4385.2025.00007
Cite(Electronic):
Rana Zainuddin, Geeta P. Darekar. Phytosomes: An Ideal way to Enhance Bioavailability of Mangiferin. Research Journal of Pharmacognosy and Phytochemistry. 2025; 17(1):38-4. doi: 10.52711/0975-4385.2025.00007 Available on: https://rjpponline.org/AbstractView.aspx?PID=2025-17-1-7
REFERENCE:
1. Alam U, Asghar O, Azmi S, Malik RA. General aspects of diabetes mellitus. Handbook of clinical neurology. 2014 Jan 1; 126:211-22.
2. Munger MA. Polypharmacy and combination therapy in the management of hypertension in elderly patients with co-morbid diabetes mellitus. Drugs and aging. 2010 Nov; 27:871-83.
3. Al-Rowais NA. Herbal medicine in the treatment of diabetes mellitus. Saudi medical journal. 2002 Nov 1;23(11):1327-31.
4. Tharanathan RN, Yashoda HM, Prabha TN. Mango (Mangifera indica L.), “The king of fruits”—An overview. Food Reviews International. 2006 Jul 1;22(2):95-123.
5. Jahurul MH, Zaidul IS, Ghafoor K, Al-Juhaimi FY, Nyam KL, Norulaini NA, Sahena F, Omar AM. Mango (Mangifera indica L.) by-products and their valuable components: A review. Food chemistry. 2015 Sep 15; 183:173-80.
6. Yahia EM. Mango (Mangifera indica L.). InPostharvest biology and technology of tropical and subtropical fruits 2011 Jan 1 (pp. 492-567e). Woodhead Publishing.
7. Pino JA, Mesa J, Muñoz Y, Martí MP, Marbot R. Volatile components from mango (Mangifera indica L.) cultivars. Journal of Agricultural and Food Chemistry. 2005 Mar 23;53(6):2213-23.
8. Yusri PZ, Ghazali NF, Mazlan NA, Lum PT, Noor AA, Mani S, Sekar M. Synthesis and characterization of mangiferin loaded n, o-cmc nanoparticles and its cytotoxic effect on osteosarcoma mg-63 cells.
9. Lum PT, Sekar M, Gan SH, Jeyabalan S, Bonam SR, Rani NN, Ku-Mahdzir KM, Seow LJ, Wu YS, Subramaniyan V, Fuloria NK. Therapeutic potential of mangiferin against kidney disorders and its mechanism of action: A review. Saudi Journal of Biological Sciences. 2022 Mar 1;29(3):1530-42.
10. Walia V, Chaudhary SK, Sethiya NK. Therapeutic potential of mangiferin in the treatment of various neuropsychiatric and neurodegenerative disorders. Neurochemistry international. 2021 Feb 1; 143:104939.,
11. Lum PT, Sekar M, Gan SH, Jeyabalan S, Bonam SR, Rani NN, Ku-Mahdzir KM, Seow LJ, Wu YS, Subramaniyan V, Fuloria NK. Therapeutic potential of mangiferin against kidney disorders and its mechanism of action: A review. Saudi Journal of Biological Sciences. 2022 Mar 1;29(3):1530-42.).
12. Pleguezuelos-Villa M, Nácher A, Hernández MJ, Buso MO, Sauri AR, Díez-Sales O. Mangiferin nanoemulsions in treatment of inflammatory disorders and skin regeneration. International Journal of Pharmaceutics. 2019 Jun 10; 564:299-307.
13. de Souza JR, Feitosa JP, Ricardo NM, Trevisan MT, de Paula HC, Ulrich CM, Owen RW. Spray-drying encapsulation of mangiferin using natural polymers. Food Hydrocolloids. 2013 Aug 1;33(1):10-8.
14. Pleguezuelos-Villa M, Diez-Sales O, Manca ML, Manconi M, Sauri AR, Escribano-Ferrer E, Nácher A. Mangiferin glycethosomes as a new potential adjuvant for the treatment of psoriasis. International Journal of Pharmaceutics. 2020 Jan 5; 573:118844.
15. Liu R, Liu Z, Zhang C, Zhang B. Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: improving in vivo ocular bioavailability. Journal of pharmaceutical sciences. 2012 Oct 1;101(10):3833-44.
16. Adin SN, Gupta I, Rashid MA, Alhamhoom Y, Aqil M, Mujeeb M. Nanotransethosomes for enhanced transdermal delivery of mangiferin against rheumatoid arthritis: formulation, characterization, invivo pharmacokinetic and pharmacodynamic evaluation. Drug delivery. 2023 Dec 31;30(1):2173338.
17. Cryer PE, Davis SN, Shamoon H. Hypoglycemia in diabetes. Diabetes care. 2003 Jun 1;26(6):1902-12.
18. Morales J, Schneider D. Hypoglycemia. The American journal of medicine. 2014 Oct 1;127(10):S17-24.
19. Cryer PE. The barrier of hypoglycemia in diabetes. Diabetes. 2008 Dec;57(12):3169.
20. Mensah-Brown EP, Obineche EN, Galadari S, Chandranath E, Shahin A, Ahmed I, Patel SM, Adem A. Streptozotocin-induced diabetic nephropathy in rats: the role of inflammatory cytokines. Cytokine. 2005 Aug 7;31(3):180-90.
21. Wang Z, Deng J, Wang Q, LI X, Wei H. Improvement in the solubility of mangiferin by HP-? -CD inclusion. Chinese Traditional Patent Medicine. 1992.
22. Han D, Chen C, Zhang C, Zhang Y, Tang X. Determination of mangiferin in rat plasma by liquid–liquid extraction with UPLC–MS/MS. Journal of pharmaceutical and biomedical analysis. 2010 Jan 5;51(1):260-3.
23. Liu R, Liu Z, Zhang C, Zhang B. Gelucire44/14 as a novel absorption enhancer for drugs with different hydrophilicities: in vitro and in vivo improvement on transcorneal permeation. Journal of pharmaceutical sciences. 2011 Aug 1;100(8):3186-95.
24. Sellamuthu PS, Arulselvan P, Fakurazi S, Kandasamy M. Beneficial effects of mangiferin isolated from Salacia chinensis on biochemical and hematological parameters in rats with streptozotocin-induced diabetes. Pak J Pharm Sci. 2014 Jan 1;27(1):161-7.
25. Sellamuthu PS, Muniappan BP, Perumal SM, Kandasamy M. Antihyperglycemic effect of mangiferin in streptozotocin induced diabetic rats. Journal of Health science. 2009;55(2):206-14.
26. Saleh S, El-Maraghy N, Reda E, Barakat W. Modulation of diabetes and dyslipidemia in diabetic insulin-resistant rats by mangiferin: role of adiponectin and TNF-α. Anais da Academia Brasileira de Ciências. 2014; 86:1935-48.
27. Wang HL, Li CY, Zhang B, Liu YD, Lu BM, Shi Z, An N, Zhao LK, Zhang JJ, Bao JK, Wang Y. Mangiferin facilitates islet regeneration and β-cell proliferation through upregulation of cell cycle and β-cell regeneration regulators. International Journal of Molecular Sciences. 2014 May 20;15(5):9016-35.
28. Pal PB, Sinha K, Sil PC. Mangiferin attenuates diabetic nephropathy by inhibiting oxidative stress mediated signaling cascade, TNFα related and mitochondrial dependent apoptotic pathways in streptozotocin-induced diabetic rats. PloS one. 2014 Sep 18;9(9): e107220.
29. Li X, Cui X, Sun X, Li X, Zhu Q, Li W. Mangiferin prevents diabetic nephropathy progression in streptozotocin‐induced diabetic rats. Phytotherapy Research. 2010 Jun; 24(6):893-9.
30. Zhu X, Cheng YQ, Du L, Li Y, Zhang F, Guo H, Liu YW, Yin XX. Mangiferin attenuates renal fibrosis through down‐regulation of osteopontin in diabetic rats. Phytotherapy Research. 2015 Feb;29(2):295-302.
31. Charlton A, Garzarella J, Jandeleit-Dahm KA, Jha JC. Oxidative stress and inflammation in renal and cardiovascular complications of diabetes. Biology. 2020 Dec 30;10(1):18.
32. Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, Kumari S, Ojha S, Arya DS. Protective effect of mangiferin on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats: role of AGE-RAGE/MAPK pathways. Scientific reports. 2017 Feb 9;7(1):42027.
33. Hou J, Zheng D, Zhong G, Hu Y. Mangiferin mitigates diabetic cardiomyopathy in streptozotocin-diabetic rats. Canadian Journal of Physiology and Pharmacology. 2013;91(9):759-63.
34. Leonhardt M, Balkan B, Langhans W. Effect of hydroxycitrate on respiratory quotient, energy expenditure, and glucose tolerance in male rats after a period of restrictive feeding. Nutrition. 2004 Oct 1;20(10):911-5.
35. Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J. Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. Journal of ethnopharmacology. 2005 Mar 21;97(3):497-501.
36. Zhang Q, Kong X, Yuan H, Guan H, Li Y, Niu Y. Mangiferin improved palmitate-induced-insulin resistance by promoting free fatty acid metabolism in HepG2 and C2C12 cells via PPARα: mangiferin improved insulin resistance. Journal of Diabetes Research. 2019 Jan 27;2019.
37. Sha H, Zeng H, Zhao J, Jin H. Mangiferin ameliorates gestational diabetes mellitus-induced placental oxidative stress, inflammation and endoplasmic reticulum stress and improves fetal outcomes in mice. European Journal of Pharmacology. 2019 Sep 15; 859:172522.
38. Ipar VS, Dsouza A, Devarajan PV. Enhancing curcumin oral bioavailability through nanoformulations. European journal of drug metabolism and pharmacokinetics. 2019 Aug 1; 44:459-80.
39. Bhingardeve D, Patil S, Patil R, Patil S. Phytosome-valuable phyto-phospholipid carriers. Journal of Current Pharma Research. 2014 Oct 1;5(1):1386.
40. Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010 Oct 1;81(7):680-9.
41. Kumar D, Vats N, Saroha K, Rana AC. Phytosomes as emerging nanotechnology for herbal drug delivery. Sustainable Agriculture Reviews 43: Pharmaceutical Technology for Natural Products Delivery Vol. 1 Fundamentals and Applications. 2020:217-37.
42. Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, Alitheen NB. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. International journal of nanomedicine. 2020 Apr 15:2439-83.
43. Gandhi A, Dutta A, Pal A, Bakshi P. Recent trends of phytosomes for delivering herbal extract with improved bioavailability. Journal of pharmacognosy and phytochemistry. 2012;1(4):06-14.
44. Rathore P, Swami G. Planterosomes: A potential phyto-phospholipid carriers for the bioavailability enhancement of herbal extracts. International Journal of pharmaceutical sciences and research. 2012 Mar 1;3(3):737.
45. Jain N, Gupta BP, Thakur N, Jain R, Banweer J, Jain DK, Jain S. Phytosome: a novel drug delivery system for herbal medicine. Int J Pharm Sci Drug Res. 2010 Oct;2(4):224-8.
46. Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer chemotherapy and pharmacology. 2007 Jul; 60:171-7.
47. Bhia M, Motallebi M, Abadi B, Zarepour A, Pereira-Silva M, Saremnejad F, Santos AC, Zarrabi A, Melero A, Jafari SM, Shakibaei M. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics. 2021 Feb 23;13(2):291
48. Rani A, Kumar S, Khar RK. MurrayaKoenigii Extract Loaded Phytosomes Prepared Using Antisolvent Precipitation Technique for Improved Antidiabetic and Hypolidemic Activity. Indian J. Pharm. Educ. Res. 2022 Apr 1;56:s326-38
49. Vankudri R, Habbu P, Hiremath M, Patil BS, Savant C. Preparation and therapeutic evaluation of rutin-phospholipid complex for antidiabetic activity. Journal of Applied Pharmaceutical Science. 2016 Jan 26;6(1):090-101
50. Rani A, Kumar S, Khar RK. Casuarinaequisetifolia extract loaded phytosomes: Optimization, characterization and in vivo evaluation of antidiabetic and antihyperlipidemic activities in Wistar rats. Drug Delivery Letters. 2019 Jun 1;9(2):116-33.
51. Amudha S, Manna PK, Jeganathan NS. Evaluation of anti-diabetic activity of Syzygiumcumini extract and its phytosome formulation against streptozotocin-induced diabetic rats. The Pharma Innovation Journal. 2018; 7:603-8.]
52. Kidd PM. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev. 2009 Sep 1;14(3):226-46.
53. Cuomo J, Appendino G, Dern AS, Schneider E, McKinnon TP, Brown MJ, Togni S, Dixon BM. Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. Journal of natural products. 2011 Apr 25;74(4):664-9.
54. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin–phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. International journal of pharmaceutics. 2007 Feb 7;330(1-2):155-63.
55. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Enhanced therapeutic potential of naringenin‐phospholipid complex in rats. Journal of pharmacy and pharmacology. 2006 Sep;58(9):1227-33.
56. Bhattacharya S. Phytosomes: the new technology for enhancement of bioavailability of botanicals and nutraceuticals. Int J Health Res. 2009;2(3):225–32
57. Shriram RG, Moin A, Alotaibi HF, Khafagy ES, Al Saqr A, Abu Lila AS, Charyulu RN. Phytosomes as a plausible nano-delivery system for enhanced oral bioavailability and improved hepatoprotective activity of silymarin. Pharmaceuticals. 2022 Jun 24;15(7):790.
58. Islam N, Irfan M, Hussain T, Mushtaq M, Khan IU, Yousaf AM, Ghori MU, Shahzad Y. Piperine phytosomes for bioavailability enhancement of domperidone. Journal of Liposome Research. 2022 Apr 3;32(2):172-80.
59. Bibi Z, Jahan N. Synthesis and biological evaluation of Ellettariacardamomum (Cardamom) Phytosomes. Pakistan Journal of Pharmaceutical Sciences. 2020 Sep 1;33(5).
60. Rathee S, Kamboj A. Optimization and development of antidiabetic phytosomes by the Box–Behnken design. Journal of liposome research. 2018 Apr 3;28(2):161-72.
61. Yu F, Li Y, Chen Q, He Y, Wang H, Yang L, Guo S, Meng Z, Cui J, Xue M, Chen XD. Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. European Journal of Pharmaceutics and Biopharmaceutics. 2016 Jun 1; 103:136-48.
62. Kumar N, Goel R, Gaur PK, Saxena PK, Puri D, Chaudhary R, Yasir M. Development and evaluation of phytosome-loaded microsphere system for delivery of ginseng extract. Journal of Microencapsulation. 2021 Nov 17;38(7-8):496-506.
63. Chaurasia S, Chaubey P, Patel RR, Kumar N, Mishra B. Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: cytotoxicity, pharmacokinetic and anticancer efficacy studies. Drug development and industrial pharmacy. 2016 May 3;42(5):694-700.
64. Sabzichi M, Hamishehkar H, Ramezani F, Sharifi S, Tabasinezhad M, Pirouzpanah M, Ghanbari P, Samadi N. Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling. Asian Pacific Journal of Cancer Prevention. 2014;15(13):5311-6.
65. Filburn CR, Kettenacker R, Griffin DW. Bioavailability of a silybin–phosphatidylcholine complex in dogs. Journal of veterinary pharmacology and therapeutics. 2007 Apr;30(2):132-8.
66. Argenziano M, Ansari IA, Muntoni E, Spagnolo R, Scomparin A, Cavalli R. Lipid-Coated Nanocrystals as a Tool for Improving the Antioxidant Activity of Resveratrol. Antioxidants. 2022 May 20;11(5):1007.
67. Kumar N, Goel R, Singh M, Sharma NK, Gaur PK, Sharma PK. Development and evaluation of Hedyotiscorymbosa (L.) extract containing phytosomes: a preclinical approach for treatment of neuropathic pain in rodent model. Journal of Microencapsulation. 2023 Apr 3;40(3):186-96.
68. Nagpal N, Arora M, Swami G, Kapoor R. Designing of a phytosome dosage form with Tecomellaundulata as a novel drug delivery for better utilization. Pakistan Journal of Pharmaceutical Sciences. 2016 Jul 1;29(4):1231-6.
69. Agarwal A, Wahajuddin M, Chaturvedi S, Singh SK, Rashid M, Garg R, Chauhan D, Sultana N, Gayen JR. Formulation and Characterization of Phytosomes as Drug Delivery System of Formononetin: An Effective Anti-Osteoporotic Agent. Current Drug Delivery. 2023.
70. Sharma A, Gupta NK, Dixit VK. Complexation with phosphatidyl choline as a strategy for absorption enhancement of boswellic acid. Drug delivery. 2010 Nov 1;17(8):587-95.
71. Freag MS, Saleh WM, Abdallah OY. Self-assembled phospholipid-based phytosomalnanocarriers as promising platforms for improving oral bioavailability of the anticancer celastrol. International journal of pharmaceutics. 2018 Jan 15;535(1-2):18-26.
72. Freag MS, Elnaggar YS, Abdallah OY. Lyophilized phytosomalnanocarriers as platforms for enhanced diosmin delivery: optimization and ex vivo permeation. International journal of nanomedicine. 2013 Jul 3:2385-97.
73. Telange DR, Patil AT, PetheAM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. European Journal of Pharmaceutical Sciences. 2017 Oct 15; 108:36-49.