Author(s): Mukund M. Pache, Krushi H. Pradhan, Ashwini S. Thorat, Rohini R. Mule, Sadanand D. Manoorkar, Avinash B. Darekar

Email(s): mukundpache918@mail.com

DOI: 10.52711/0975-4385.2026.00007   

Address: Mukund M. Pache1*, Krushi H. Pradhan1, Ashwini S. Thorat1, Rohini R. Mule1, Sadanand D. Manoorkar1, Avinash B. Darekar2
1Department of Pharmacognosy, K.V.N. Naik S.P. Sanstha's, Institute of Pharmaceutical Education and Research, Nashik, 422002, Maharashtra, India. 2Principal, K.V.N. Naik S. P. Sanstha's, Institute of Pharmaceutical Education & Research, Nashik, 422002, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 1,     Year - 2026


ABSTRACT:
Diabetes mellitus (DM) is a severe metabolic disorder characterised by persistently high blood glucose levels, which arise due to inadequate insulin secretion, dysfunctional insulin activity, or a combination of these factors. While pharmacological treatments have advanced significantly, conventional therapies often fail to deliver optimal results due to their broad-spectrum approach. This challenge has led to growing interest in phytochemicals, naturally occurring bioactive compounds from plants, as alternative or complementary strategies for diabetes management. Various phytochemicals, including polyphenols, flavonoids, alkaloids, and terpenoids, have demonstrated notable antidiabetic properties. These compounds improve insulin sensitivity, promote better glucose regulation, reduce oxidative stress, and lower inflammation. Their mechanisms of action involve enhancing ß-cell function, inhibiting a-glucosidase enzymes, and promoting lipid homeostasis. Evidence from both preclinical and clinical studies supports their therapeutic potential and safety profile. Nevertheless, further well-structured clinical trials are essential to establish appropriate dosages, long-term safety, and efficacy. This review emphasises the promising role of phytochemicals in diabetes management, underscoring their value in enhancing glycaemic control and mitigating complications.


Cite this article:
Mukund M. Pache, Krushi H. Pradhan, Ashwini S. Thorat, Rohini R. Mule, Sadanand D. Manoorkar, Avinash B. Darekar. Targeting Diabetes Mellitus through Phytochemicals: A Systematic Overview of Plant-Derived Bioactives, Pathophysiological Mechanisms and Clinical Implications. Research Journal of Pharmacognosy and Phytochemistry. 2026; 18(1):38-8. doi: 10.52711/0975-4385.2026.00007

Cite(Electronic):
Mukund M. Pache, Krushi H. Pradhan, Ashwini S. Thorat, Rohini R. Mule, Sadanand D. Manoorkar, Avinash B. Darekar. Targeting Diabetes Mellitus through Phytochemicals: A Systematic Overview of Plant-Derived Bioactives, Pathophysiological Mechanisms and Clinical Implications. Research Journal of Pharmacognosy and Phytochemistry. 2026; 18(1):38-8. doi: 10.52711/0975-4385.2026.00007   Available on: https://rjpponline.org/AbstractView.aspx?PID=2026-18-1-7


REFERENCES:
1.    Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020; 10(1): 14790; doi: 10.1038/s41598-020-71908-9.
2.    Ye J, Wu Y, Yang S, et al. The global, regional and national burden of type 2 diabetes mellitus in the past, present and future: a systematic analysis of the Global Burden of Disease Study 2019. Front Endocrinol. 2023; 14: 1192629; doi: 10.3389/fendo.2023.1192629.
3.    Auvinen A-M, Luiro K, Jokelainen J, et al. Type 1 and type 2 diabetes after gestational diabetes: a 23 year cohort study. Diabetologia. 2020; 63(10): 2123–2128; doi: 10.1007/s00125-020-05215-3.
4.    Mukerji G, Bacon S, Feig DS. Gestational Diabetes and Type 2 Diabetes During Pregnancy. In: Maternal-Fetal and Neonatal Endocrinology Elsevier; 2020; pp. 371–388; doi: 10.1016/B978-0-12-814823-5.00022-2.
5.    Stehouwer CDA. Microvascular Dysfunction and Hyperglycemia: A Vicious Cycle With Widespread Consequences. Diabetes. 2018; 67(9): 1729–1741; doi: 10.2337/dbi17-0044.
6.    Pache MM, Pangavhane RR. Immunotherapy in Autoimmune Diseases: Current Advances and Future Directions. Asian Journal of Pharmaceutical Research. 2025; 15(2): 183–191; doi: 10.52711/2231-5691.2025.00030.
7.    Tan SY, Mei Wong JL, Sim YJ, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019; 13(1): 364–372; doi: 10.1016/j.dsx.2018.10.008.
8.    Karachaliou F, Simatos G, Simatou A. The Challenges in the Development of Diabetes Prevention and Care Models in Low-Income Settings. Front Endocrinol. 2020; 11: 518; doi: 10.3389/fendo.2020.00518.
9.    Huang W, Wang Y, Tian W, et al. Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid Antimicrobial Agents Derived from Medicinal Plants. Antibiotics. 2022; 11(10): 1380; doi: 10.3390/antibiotics11101380.
10.    Ahangarpour A, Sayahi M, Sayahi M. The antidiabetic and antioxidant properties of some phenolic phytochemicals: A review study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews.  2019; 13(1): 854–857; doi: 10.1016/j.dsx.2018.11.051.
11.    Lee S-H, Park S-Y, Choi CS. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab J. 2022; 46(1): 15–37; doi: 10.4093/dmj.2021.0280.
12.    Rosenzweig T, Sampson SR. Activation of Insulin Signaling by Botanical Products. IJMS. 2021; 22(8): 4193; doi: 10.3390/ijms22084193.
13.    Pache M, Nikam S. Antibiotic Resistance: Current Challenges and Future Directions. Int J of Pharm Sci. 2025; 3(1): 1600–1622; doi: 10.5281/ZENODO.14690670.
14.    Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol. 2020; 16(7): 349–362; doi: 10.1038/s41574-020-0355-7.
15.    Luo G, Xiao L, Wang D, et al. Resveratrol attenuates excessive ethanol exposure-induced β-cell senescence in rats: A critical role for the NAD+/SIRT1-p38MAPK/p16 pathway. The Journal of Nutritional Biochemistry. 2021; 89: 108568; doi: 10.1016/j.jnutbio.2020.108568.
16.    Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine & Pharmacotherapy. 2018; 108: 656–662; doi: 10.1016/j.biopha.2018.09.058.
17.    Zhang P, Li T, Wu X, et al. Oxidative stress and diabetes: antioxidative strategies. Front Med. 2020; 14(5): 583–600; doi: 10.1007/s11684-019-0729-1.
18.    Singh A, Kukreti R, Saso L, et al. Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes. Molecules. 2022; 27(3): 950; doi: 10.3390/molecules27030950.
19.    Gong M, Duan H, Wu F, et al. Berberine Alleviates Insulin Resistance and Inflammation via Inhibiting the LTB4–BLT1 Axis. Front Pharmacol. 2021; 12: 722360; doi: 10.3389/fphar.2021.722360.
20.    Jin Y, Arroo R. The protective effects of flavonoids and carotenoids against diabetic complications—A review of in vivo evidence. Front Nutr. 2023; 10: 1020950; doi: 10.3389/fnut.2023.1020950.
21.    Alam S, Sarker MdMR, Sultana TN, et al. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front Endocrinol. 2022; 13: 800714; doi: 10.3389/fendo.2022.800714.
22.    Pangavhane R, Pache M. Phytochemicals in The Management of Diabetes Mellitus:  A Comprehensive Review. Int J Sci R Tech. 2025; 2(4): 6–14; doi: 10.5281/zenodo.15122232.
23.    Shamsudin NF, Ahmed QU, Mahmood S, et al. Flavonoids as Antidiabetic and Anti-Inflammatory Agents: A Review on Structural Activity Relationship-Based Studies and Meta-Analysis. IJMS. 2022; 23(20): 12605; doi: 10.3390/ijms232012605.
24.    Proença C, Ribeiro D, Freitas M, et al. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: a review. Critical Reviews in Food Science and Nutrition. 2022; 62(12): 3137–3207; doi: 10.1080/10408398.2020.1862755.
25.    Hussain T, Tan B, Murtaza G, et al. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacological Research. 2020; 152: 104629; doi: 10.1016/j.phrs.2020.104629.
26.    Pache MM, Thorat AS, Mule RR, et al. Recent advances in the use of alkaloids as therapeutic agents: A pharmacognostic perspective. World Journal of Pharmaceutical Research. 2025; 14(2): 538–552.
27.    Rasouli H, Yarani R, Pociot F, et al. Anti-diabetic potential of plant alkaloids: Revisiting current findings and future perspectives. Pharmacological Research. 2020; 155: 104723; doi: 10.1016/j.phrs.2020.104723.
28.    Song B-R, Alam MB, Lee S-H. Terpenoid-Rich Extract of Dillenia indica L. Bark Displays Antidiabetic Action in Insulin-Resistant C2C12 Cells and STZ-Induced Diabetic Mice by Attenuation of Oxidative Stress. Antioxidants. 2022; 11(7): 1227; doi: 10.3390/antiox11071227.
29.    Huang J, Yi Q, You Y, et al. Curcumin suppresses oxidative stress via regulation of ROS/NF-κB signaling pathway to protect retinal vascular endothelial cell in diabetic retinopathy. Mol Cell Toxicol. 2021; 17(3): 367–376; doi: 10.1007/s13273-021-00144-7.
30.    Huang D-D, Shi G, Jiang Y, et al. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomedicine & Pharmacotherapy. 2020; 125: 109767; doi: 10.1016/j.biopha.2019.109767.
31.    Sun C, Zhao C, Guven EC, et al. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Frontiers. 2020; 1(1): 18–44; doi: 10.1002/fft2.15.
32.    Chen L, Teng H, Cao H. Chlorogenic acid and caffeic acid from Sonchus oleraceus Linn synergistically attenuate insulin resistance and modulate glucose uptake in HepG2 cells. Food and Chemical Toxicology. 2019; 127: 182–187; doi: 10.1016/j.fct.2019.03.038.
33.    Kong M, Xie K, Lv M, et al. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomedicine & Pharmacotherapy. 2021; 133: 110975; doi: 10.1016/j.biopha.2020.110975.
34.    Ansari P, Akther S, Hannan JMA, et al. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules. 2022; 27(13): 4278; doi: 10.3390/molecules27134278.
35.    Ghareghomi S, Rahban M, Moosavi-Movahedi Z, et al. The Potential Role of Curcumin in Modulating the Master Antioxidant Pathway in Diabetic Hypoxia-Induced Complications. Molecules. 2021; 26(24): 7658; doi: 10.3390/molecules26247658.
36.    Barber TM, Kabisch S, Randeva HS, et al. Implications of Resveratrol in Obesity and Insulin Resistance: A State-of-the-Art Review. Nutrients. 2022; 14(14): 2870; doi: 10.3390/nu14142870.
37.    Zatterale F, Longo M, Naderi J, et al. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol. 2020; 10: 1607; doi: 10.3389/fphys.2019.01607.
38.    Zhu Z, Xueying L, Chunlin L, et al. Effect of berberine on LPS-induced expression of NF- κ B/MAPK signalling pathway and related inflammatory cytokines in porcine intestinal epithelial cells. Innate Immun. 2020; 26(7): 627–634; doi: 10.1177/1753425920930074.
39.    Wu H, Lin X, Yang X, et al. Kaempferol attenuates inflammation in lipopolysaccharide‐induced gallbladder epithelial cells by inhibiting the MAPK / NF‐ΚB signaling pathway. Chem Biol Drug Des. 2024; 103(4): e14519; doi: 10.1111/cbdd.14519.
40.    Zamanian MY, Alsaab HO, Golmohammadi M, et al. NF‐κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochemistry; Function. 2024; 42(4): e4030; doi: 10.1002/cbf.4030.
41.    Sayem A, Arya A, Karimian H, et al. Action of Phytochemicals on Insulin Signaling Pathways Accelerating Glucose Transporter (GLUT4) Protein Translocation. Molecules. 2018; 23(2): 258; doi: 10.3390/molecules23020258.
42.    Semwal DK, Kumar A, Aswal S, et al. Protective and therapeutic effects of natural products against diabetes mellitus via regenerating pancreatic β ‐cells and restoring their dysfunction. Phytotherapy Research. 2021; 35(3): 1218–1229; doi: 10.1002/ptr.6885.
43.    Li Y, Wang B, Shen J, et al. Berberine attenuates fructose-induced insulin resistance by stimulating the hepatic LKB1/AMPK/PGC1α pathway in mice. Pharmaceutical Biology. 2020; 58(1): 385–392; doi: 10.1080/13880209.2020.1756349.
44.    Kashtoh H, Baek K-H. Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. Plants. 2022; 11(20): 2722; doi: 10.3390/plants11202722.
45.    Jeong Y-J, Hwang M-J, Hong C-O, et al. Anti-hyperglycemic and hypolipidemic effects of black ginseng extract containing increased Rh4, Rg5, and Rk1 content in muscle and liver of type 2 diabetic db/db mice. Food Sci Biotechnol. 2020; 29(8): 1101–1112; doi: 10.1007/s10068-020-00753-3.
46.    Šrámek J, Němcová-Fürstová V, Kovář J. Molecular Mechanisms of Apoptosis Induction and Its Regulation by Fatty Acids in Pancreatic β-Cells. IJMS. 2021; 22(8): 4285; doi: 10.3390/ijms22084285.
47.    Wang P, Huang C, Gao J, et al. Resveratrol induces SIRT1-Dependent autophagy to prevent H2O2-Induced oxidative stress and apoptosis in HTR8/SVneo cells. Placenta. 2020; 91: 11–18; doi: 10.1016/j.placenta.2020.01.002.
48.    Yao X, Li K, Liang C, et al. Tectorigenin enhances PDX1 expression and protects pancreatic β-cells by activating ERK and reducing ER stress. Journal of Biological Chemistry. 2020; 295(37): 12975–12992; doi: 10.1074/jbc.RA120.012849.
49.    Srivastava NS, Srivastava RAK. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine. 2019; 52: 117–128; doi: 10.1016/j.phymed.2018.09.224.
50.    Mokra D, Joskova M, Mokry J. Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. IJMS. 2022; 24(1): 340; doi: 10.3390/ijms24010340.
51.    Jang H-J, Ridgeway SD, Kim J. Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin resistance and endothelial dysfunction. American Journal of Physiology-Endocrinology and Metabolism. 2013; 305(12): E1444–E1451; doi: 10.1152/ajpendo.00434.2013.
52.    Nie T, Cooper GJS. Mechanisms Underlying the Antidiabetic Activities of Polyphenolic Compounds: A Review. Front Pharmacol. 2021; 12: 798329; doi: 10.3389/fphar.2021.798329.
53.    Sharma P, Joshi T, Mathpal S, et al. In silico identification of antidiabetic target for phytochemicals of A. marmelos and mechanistic insights by molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics. 2022; 40(21): 10543–10560; doi: 10.1080/07391102.2021.1944910.
54.    Daverey A, Agrawal SK. Curcumin Protects against White Matter Injury through NF-κB and Nrf2 Cross Talk. Journal of Neurotrauma. 2020; 37(10): 1255–1265; doi: 10.1089/neu.2019.6749.
55.    Lin X, Bai D, Wei Z, et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. Mukhopadhyay P. ed. PLoS ONE. 2019; 14(5): e0216711; doi: 10.1371/journal.pone.0216711.
56.    Lu C, Xing H, Yang L, et al. Resveratrol Ameliorates High-Fat-Diet-Induced Abnormalities in Hepatic Glucose Metabolism in Mice via the AMP-Activated Protein Kinase Pathway. Zaid H. ed. Evidence-Based Complementary and Alternative Medicine. 2021; 2021: 1–9; doi: 10.1155/2021/6616906.
57.    Li W, Li D, Kuang H, et al. Berberine increases glucose uptake and intracellular ROS levels by promoting Sirtuin 3 ubiquitination. Biomedicine & Pharmacotherapy. 2020; 121: 109563; doi: 10.1016/j.biopha.2019.109563.
58.    Pérez-Nájera VC, Gutiérrez-Uribe JA, Antunes-Ricardo M, et al. Smilax aristolochiifolia Root Extract and Its Compounds Chlorogenic Acid and Astilbin Inhibit the Activity of α ‐Amylase and α ‐Glucosidase Enzymes. Tomczyk M. ed. Evidence-Based Complementary and Alternative Medicine. 2018; 2018(1): 6247306; doi: 10.1155/2018/6247306.
59.    Zhai H, Wang D, Wang Y, et al. Kaempferol alleviates adipose tissue inflammation and insulin resistance in db/db mice by inhibiting the STING/NLRP3 signaling pathway. Endocrine Connections 2024;13(5):e230379; doi: 10.1530/EC-23-0379.
60.    Asrafuzzaman Md, Cao Y, Afroz R, et al. Animal models for assessing the impact of natural products on the aetiology and metabolic pathophysiology of Type 2 diabetes. Biomedicine & Pharmacotherapy. 2017; 89: 1242–1251; doi: 10.1016/j.biopha.2017.03.010.
61.    Febriza A, Zahrah A, Andini N, et al. Potential Effect of Curcumin in Lowering Blood Glucose Level in Streptozotocin-Induced Diabetic Rats. DMSO. 2024; 17: 3305–3313; doi: 10.2147/DMSO.S468059.
62.    Sayeli VK, Shenoy AK. Antidiabetic effect of bio-enhanced preparation of turmeric in streptozotocin-nicotinamide induced type 2 diabetic Wistar rats. Journal of Ayurveda and Integrative Medicine. 2021; 12(3): 474–479; doi: 10.1016/j.jaim.2021.04.010.
63.    Yan H, Zhang Y, Lin X, et al. Resveratrol improves diabetic kidney disease by modulating the gut microbiota-short chain fatty acids axis in db/db mice. International Journal of Food Sciences and Nutrition. 2024; 75(3): 264–276; doi: 10.1080/09637486.2024.2303041.
64.    Cai T-T, Ye X-L, Li R-R, et al. Resveratrol Modulates the Gut Microbiota and Inflammation to Protect Against Diabetic Nephropathy in Mice. Front Pharmacol. 2020; 11: 1249; doi: 10.3389/fphar.2020.01249.
65.    Liu Y, Deng Y, Wang F, et al. A New Mechanism for Ginsenoside Rb1 to Promote Glucose Uptake, Regulating Riboflavin Metabolism and Redox Homeostasis. Metabolites 2022;12(11):1011; doi: 10.3390/metabo12111011.
66.    Yin J, Huang Y, Wang K, et al. Ginseng extract improves pancreatic islet injury and promotes β-cell regeneration in T2DM mice. Front Pharmacol. 2024; 15: 1407200; doi: 10.3389/fphar.2024.1407200.
67.    Delpino FM, Figueiredo LM. Resveratrol supplementation and type 2 diabetes: a systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition. 2022; 62(16): 4465–4480; doi: 10.1080/10408398.2021.1875980.
68.    Zhu X, Wu C, Qiu S, et al. Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: systematic review and meta-analysis. Nutr Metab (Lond). 2017; 14(1): 60; doi: 10.1186/s12986-017-0217-z.
69.    Wang L, Liu D, Wei G, et al. Berberine and Metformin in the Treatment of Type 2 Diabetes Mellitus: A Systemic Review and Meta-Analysis of Randomized Clinical Trials. Health. 2021; 13(11): 1314–1329; doi: 10.4236/health.2021.1311096.
70.    Mazurek A, Pawlicki M, Stachyrak K, et al. Berberine in the treatment of type 2 diabetes - literature review. J Educ Health Sport. 2024; 67: 49000; doi: 10.12775/JEHS.2024.67.49000.
71.    Zuñiga LY, Aceves-de La Mora MCA, González-Ortiz M, et al. Effect of Chlorogenic Acid Administration on Glycemic Control, Insulin Secretion, and Insulin Sensitivity in Patients with Impaired Glucose Tolerance. Journal of Medicinal Food. 2018; 21(5): 469–473; doi: 10.1089/jmf.2017.0110.
72.    Rezaeiamiri E, Bahramsoltani R, Rahimi R. Plant-derived natural agents as dietary supplements for the regulation of glycosylated hemoglobin: A review of clinical trials. Clinical Nutrition. 2020; 39(2): 331–342; doi: 10.1016/j.clnu.2019.02.006.
73.    Kour G, Haq SA, Bajaj BK, et al. Phytochemical add-on therapy to DMARDs therapy in rheumatoid arthritis: In vitro and in vivo bases, clinical evidence and future trends. Pharmacological Research. 2021; 169: 105618; doi: 10.1016/j.phrs.2021.105618.
74.    Petracca M, Quarantelli M, Moccia M, et al. ProspeCtive study to evaluate efficacy, safety and tOlerability of dietary supplemeNT of Curcumin (BCM95) in subjects with Active relapsing MultIple Sclerosis treated with subcutaNeous Interferon beta 1a 44 mcg TIW (CONTAIN): A randomized, controlled trial. Multiple Sclerosis and Related Disorders. 2021; 56: 103274; doi: 10.1016/j.msard.2021.103274.
75.    Krueger E, Austin M, Ekpo I, et al. Screening Phytochemicals for Alternative Diabetes Treatments. The FASEB Journal. 2020; 34(S1): 1–1; doi: 10.1096/fasebj.2020.34.s1.05911.
76.    Prabhakar PK, Doble M. Synergistic effect of phytochemicals in combination with hypoglycemic drugs on glucose uptake in myotubes. Phytomedicine. 2009; 16(12): 1119–1126; doi: 10.1016/j.phymed.2009.05.021.
77.    Wiciński M, Erdmann J, Nowacka A, et al. Natural Phytochemicals as SIRT Activators—Focus on Potential Biochemical Mechanisms. Nutrients. 2023; 15(16): 3578; doi: 10.3390/nu15163578.
78.    Yang DK, Kang H-S. Anti-Diabetic Effect of Cotreatment with Quercetin and Resveratrol in Streptozotocin-Induced Diabetic Rats. Biomolecules & Therapeutics. 2018; 26(2): 130–138; doi: 10.4062/biomolther.2017.254.
79.    Singh VK, Arora D, Ansari MI, et al. Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications. Phytotherapy Research. 2019; 33(12): 3064–3089; doi: 10.1002/ptr.6508.
80.    Dhami N, Mishra AD. Phytochemical variation: How to resolve the quality controversies of herbal medicinal products? Journal of Herbal Medicine. 2015; 5(2): 118–127; doi: 10.1016/j.hermed.2015.04.002.
81.    Zhou R, Zheng Y, An X, et al. Dosage Modification of Traditional Chinese Medicine Prescriptions: An Analysis of Two Randomized Controlled Trials. Front Pharmacol. 2021; 12: 732698; doi: 10.3389/fphar.2021.732698.
82.    Gupta RC, Chang D, Nammi S, et al. Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetol Metab Syndr. 2017; 9(1): 59; doi: 10.1186/s13098-017-0254-9.
83.    Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. IJMS. 2022; 23(21): 13223; doi: 10.3390/ijms232113223.
84.    McClements DJ. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnology Advances. 2020; 38: 107287; doi: 10.1016/j.biotechadv.2018.08.004.
85.    Pache M, Bachhav G, Bhamare A, et al. Mapping Drug Responses Through Multi-Omics: A New Era of Bioinformatics in Precision Medicine. Int J Sci R Tech. 2025; 2(8): 319–335; doi: 10.5281/ZENODO.16914606.
86.    Manish Khairnar* SM. Integrative Multi-Omics in Precision Medicine: From Molecular Interconnectivity to Single-Cell Resolution. 2025; doi: 10.5281/ZENODO.15831126.
87.    Pache MM, Pangavhane RR, Nikam SV, et al. CRISPR-Cas9 in Pharmaceutical Research: Applications, Challenges, Ethical Considerations and Future Directions. Asian Journal of Pharmacy and Technology. 2025.
88.    Mechchate H, Es-safi I, Haddad H, et al. Combination of Catechin, Epicatechin, and Rutin: Optimization of a novel complete antidiabetic formulation using a mixture design approach. The Journal of Nutritional Biochemistry. 2021; 88: 108520; doi: 10.1016/j.jnutbio.2020.108520.
89.    Omale S, Amagon KI, Johnson TO, et al. A systematic analysis of anti-diabetic medicinal plants from cells to clinical trials. Peer J. 2023; 11: e14639; doi: 10.7717/peerj.14639.

Recomonded Articles:

Author(s): Mr. Avinash B. Thalkari, Mr. Pawan N. Karwa, Ms. Pallavi S. Shinde, Chandrakant S. Gawli, Priyanka S. Chopane

DOI: 10.5958/0975-4385.2020.00006.0         Access: Open Access Read More

Author(s): Anshuman Singh, Bhupendra Vyas

DOI: 10.5958/0975-4385.2018.00052.3         Access: Open Access Read More

Author(s): Bapu R. Thorat

DOI: 10.5958/0975-4385.2018.00017.1         Access: Open Access Read More

Author(s): Shifali Thakur, Bhawna Walia, Gitika Chaudhary

DOI: 10.52711/0975-4385.2021.00024         Access: Open Access Read More

Author(s): Baviskar H. P., Dhake G. T., Kasai M. A., Chaudhari N. B., Deshmukh T. A.

DOI: 10.5958/0975-4385.2017.00024.3         Access: Open Access Read More

Author(s): Kavitha M, Vadivu R, Radha R

DOI: 10.5958/0975-4385.2015.00037.0         Access: Open Access Read More

Author(s): Punita R. Maurya, Swati R. Dhande, Yadunath M. Joshi, Vilasrao J. Kadam

DOI:         Access: Open Access Read More

Author(s): AV Bhosale, MM Abhyankar, SJ Pawar, Khan Shoeb, Naresh Patil

DOI:         Access: Open Access Read More

Author(s): S C Baviya, R Radha, N Jayshree

DOI: 10.5958/0975-4385.2015.00038.2         Access: Open Access Read More

Author(s): Chandrakant P. Rathod, Mahavir H. Ghante

DOI: 10.52711/0975-4385.2021.00022         Access: Open Access Read More

Author(s): Raje VN, Yadav AV, Shelar PA

DOI:         Access: Open Access Read More

Author(s): Alimuddin Saifi, Rajani Chauhan, J Dwivedi

DOI:         Access: Open Access Read More

Author(s): Kalpana Patil, Swati Dhande, Vilasrao Kadam

DOI:         Access: Open Access Read More

Author(s): Obidoa, Onyechi, Joshua, Parker Elijah, Egemole, John C., Ikeyi Adachukwu

DOI:         Access: Open Access Read More

Author(s): Praveen S Nayak, Shweta Nayak, Ranjan Shety, P Das

DOI:         Access: Open Access Read More

Author(s): Vidula Salvi, Yadunath Joshi, Swati Dhande , Vilasrao Kadam

DOI:         Access: Open Access Read More

Author(s): Ramesh D. Ingole, Avinash B. Thalkari, Pawan N. Karwa, Krushna K. Zambare, Pallavi S. Shinde

DOI: 10.5958/0975-4385.2020.00027.8         Access: Open Access Read More


Recent Articles




Tags