Author(s): Shraddha Jain, Sanket Jain, Dr. Sujit Pillai, Rampal Singh Mandloi

Email(s): sanketj0960@gmail.com

DOI: 10.52711/0975-4385.2023.00041   

Address: Shraddha Jain*, Sanket Jain, Dr. Sujit Pillai, Rampal Singh Mandloi
GRY Institute of Pharmacy, Borawan (Distt. Khargone) 451228.
*Corresponding Author

Published In:   Volume - 15,      Issue - 3,     Year - 2023


ABSTRACT:
Artificial intelligence is gradually changing the landscape of healthcare and biomedical research. Artificial Intelligence is a field of science that pursue the goal of creating intelligent application and machine that can be mimic human cognitive functions, such as learning and problem solving machine learning {NL} and deep learning {DL} are subsets of artificial intelligence{AI}. Life expectancy has been increasing worldwide due to significant improvements in healthcare, and medicine, as well as due to growing consciousness about personal and environmental hygiene. In this paper e discussed about Radiology, Specific trends, Autonomous robotic surgery, Technical challenges in AI developments, Role of AI in last decades, applications of AI and future aspect of AI.


Cite this article:
Shraddha Jain, Sanket Jain, Dr. Sujit Pillai, Rampal Singh Mandloi. Review article on Role of Artificial Intelligence in Radiology. Research Journal of Pharmacognosy and Phytochemistry. 2023; 15(3):.264-0 doi: 10.52711/0975-4385.2023.00041

Cite(Electronic):
Shraddha Jain, Sanket Jain, Dr. Sujit Pillai, Rampal Singh Mandloi. Review article on Role of Artificial Intelligence in Radiology. Research Journal of Pharmacognosy and Phytochemistry. 2023; 15(3):.264-0 doi: 10.52711/0975-4385.2023.00041   Available on: https://rjpponline.org/AbstractView.aspx?PID=2023-15-3-13


REFERENCE:
1.    Majumder Sumit, Mondal Tapas, Deen M. Jamal, Review on Wearable Sensors for Remote Health Monitoring. MDPI, 2017; 1-45.
2.    U.S. Health Care Costs Rise Faster Than Inflation. Available online: http://www.forbes.com/ sites/mikepatton/2015/06/29/u-s-health-care-costs-rise-faster-than-inflation/#1384765c6ad2 (accessed on 20 June 2016).
3.    Deen, M.J. Information and communications technologies for elderly ubiquitous healthcare in a smart home. Pers. Ubiquitous Comput. 2015, 19, 573–599. [CrossRef]
4.    Kun-Hsing Yu, Andrew L. Beam and Isaac S. Kohane, Review on Artificial Intelligence Healthcare. Natural Biomedical Engineering., 2018; 2 ;719-731
5.    https://itrexgroup.com/blog/artificial-intelligence-in-radiology-use-cases-predictions/#intro
6.    Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016).
7.    Szolovits, P. & Pauker, S. G. Categorical and probabilistic reasoning in medical diagnosis. Artif. Intell. 11, 115–144 (1978).
8.    Driver C. Noelle, Bowles S. Bradley, Bartholmai J. Brian and Greenberg-Worisek J. Alexandra, Artificial Intelligence in Radiology: A Call for Thoughtful Application, Clinical and Translational Science 2019; XX,1-3
9.    Reed, J. C. Chest Radiology: Plain Film Patterns and Differential Diagnoses (Elsevier Health Sciences, Philadelphia, 2010).
10.    Dunnick NR (2003) Report of the 2002 Intersociety Commission meeting: Radiology 2002—today’s research is tomorrow’s practice. AJR Am J Roentgenol 180:925–928
11.    Schmid Karoline, Lai Mun Sim, Kamiya Yumiko. World Population Ageing. United Nations, Department of Economic and Social Affairs.2019;1-36.
12.    Sardanelli Francesco. European Radiology Experimental. Trends in radiology and experimental research. 2017; 1:1; 1-7
13.    Bello J (2012) Turf issues in radiology and its subspecialties. Neuroimaging Clin N Am 22:411–419
14.    Flor N, Di Leo G, Squarza SA et al (2013) Malignant incidental extracardiac findings on cardiac CT: systematic review and meta-analysis. AJR Am J Roentgenol 201:555–564.
15.    Holscher HC (2016) Hybrid imaging: The Dutch approach. Presentation at the ESR Leadership Meeting. Barcelona, 17 Nov 2016
16.    European Society of Radiology (ESR) Eurosafe Imaging. Available at: http://www.eurosafeimaging.org/. Accessed on 4 Jan 2017
17.    European Society of Radiology and European Federation of Radiographer Societies. Patient Safety in Medical Imaging: a joint paper of the European Society of Radiology (ESR) and the European Federation of Radiographer Societies (EFRS). European Society of Radiology (ESR) Insights into Imaging. 2019;1-17.
18.    Sardanelli F, Hunink MG, Gilbert FJ, Di Leo G, Krestin GP (2010) Evidence based radiology: why and how? Eur Radiol 20:1–15.
19.    Saghiri Mohammad Ali, Vahidipour Mehdi S., Jabbarpour Reza Mohammad, Mehdi Sookhak and Agostino Forestiero. Review on A Survey of Artificial Intelligence Challenges: Analyzing the Definitions, Relationships, and Evolutions. Applied Science. 2022; 12. 1-21
20.    Jinpei Han1, Joseph Davids, Hutan Ashrafian, Ara Darzi1, Daniel S. Elson, Mikael Sodergren. A systematic review of robotic surgery: From supervised paradigms to fully autonomous robotic approaches. International Journal of Medical Robotics and Computer Assisted Surgery. December 2021, 1-11.
21.    Ashrafian H, Clancy O, Grover V, Darzi A. The evolution of robotic surgery: surgical and anaesthetic aspects. Br J Anaesth. 2017; 119(suppl_1): i72‐i84.
22.    Leonard S, Wu KL, Kim Y, Krieger A, Kim PC. Smart tissue anasto- mosis robot (STAR): a vision‐guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng. 2014; 61(4): 1305-1317.
23.    Yang, R., Shin, E., Newman, M. W. & Ackerman, M. S. When fitness trackers don’t ‘fit’: end-user difficulties in the assessment of personal tracking device accuracy. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing 623–634 (ACM, 2015).
24.    Shademan, A. et al. Supervised autonomous robotic soft tissue surgery. Sci. Transl. Med. 8, 337ra364 (2016).
25.    Mina S. Makary, Carol A. Vitellas. Artificial Intelligence in Radiology: Current Applications and Future Technologies. HealthManagement.org The Journal. 2021; 21(4): 205-208.
26.    Ahmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H. Schwartz, and Hugo J. W. L. Aerts. Artificial intelligence in radiology. National centre of Biotechnology Information. 2018; 18(8): 500-510.
27.    Adrian P. Brady and Emanuele Neri. Artificial Intelligence in Radiology—Ethical Considerations. Diagnostics. 2020, 10, 231; 1-9.




Recomonded Articles:

Author(s): Shraddha Jain, Sanket Jain, Dr. Sujit Pillai, Rampal Singh Mandloi

DOI: 10.52711/0975-4385.2023.00041         Access: Open Access Read More


Recent Articles




Tags