Author(s):
Manas Ranjan Sahoo, Ramesh R. varrier, Anithakumari R, Guruvaurappan Palanichamy, Bala Tirupura Sundari H, Bala Guru
Email(s):
manasranjansahoo09@yahoo.com , manas@avnayurveda.in
DOI:
10.52711/0975-4385.2023.00029
Address:
Manas Ranjan Sahoo1*, Ramesh R. varrier1, Anithakumari R2, Guruvaurappan Palanichamy3, Bala Tirupura Sundari H1, Bala Guru1
1AVN Ayurveda Formulation Pvt Ltd, Quality Control, Madurai, Tamil Nadu, India, 625004.
2AVN Ayurveda Formulation Pvt Ltd, Research and Department, Madurai, Tamil Nadu, India, 625004.
3AVN Ayurveda Formulation Pvt Ltd, Microbiology Department, Madurai, Tamil Nadu, India, 625004.
*Corresponding Author
Published In:
Volume - 15,
Issue - 3,
Year - 2023
ABSTRACT:
Crocus sativus L. commonly known as saffron or Kesar in India, is an important medicinal herb in Ayurveda and has been traditionally used for treatment of neurological disorders, for depression, anxiety and sleep disorders. It is uses as a coloring and flavouring agent in the preparation of various foods. Modern research has high lighted its beneficial effects in treatment of cardiovascular action, diabetic cataract, and as a potent antiinflammatory herb. Due to its high cost its quality control is of utmost importance to ensure its authenticity, purity and its medicinal properties. In the preset study the we have used Thin Layer Chromatography (TLC) analysis, High performance thin layer chromatography (HPTLC) fingerprint, UV-Vis spectrophotometric analysis, 1H nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR) based metabolomic study for quality control and characterization of saffron. The antibacterial and antifungal activity were evaluated using agar well-diffusion method in two pathogenic bacterial strains, Escherichia coli, Staphylococcus aureus and two pathogenic fungal strains, Candida albicans, and Aspergillus brasiliensis. The 1H NMR spectroscopy couples with FTIR analysis leads to identifcation of the secondary metabolites of saffron like crocetin, picrocrocin and safranal on basis of reported diagonostic signals and peaks. The antimicrobial activity showed moderate antibacterial and antifungal activity. The TLC and HPTLC profile reveals the characteristic fingerprint. Overall the present study showed that the 1H-NMR, FTIR based metabolomics approach and TLC and HPTLC metabolite profiling can be powerful strategy for maintaining the holistic quality of the saffron.
Cite this article:
Manas Ranjan Sahoo, Ramesh R. varrier, Anithakumari R, Guruvaurappan Palanichamy, Bala Tirupura Sundari H, Bala Guru. Analytical Profiling of Saffron (Crocus sativus) using 1H-NMR and FTIR based Metabolomics approach and UV-Vis, HPTLC and TLC Chromatography Fingerprinting. Research Journal of Pharmacognosy and Phytochemistry. 2023; 15(3):191-7. doi: 10.52711/0975-4385.2023.00029
Cite(Electronic):
Manas Ranjan Sahoo, Ramesh R. varrier, Anithakumari R, Guruvaurappan Palanichamy, Bala Tirupura Sundari H, Bala Guru. Analytical Profiling of Saffron (Crocus sativus) using 1H-NMR and FTIR based Metabolomics approach and UV-Vis, HPTLC and TLC Chromatography Fingerprinting. Research Journal of Pharmacognosy and Phytochemistry. 2023; 15(3):191-7. doi: 10.52711/0975-4385.2023.00029 Available on: https://rjpponline.org/AbstractView.aspx?PID=2023-15-3-1
REFERENCES:
1. Natalia M, Maria JB, Candida L, Martinez-Navarro ME, Rosario S. Bioactivity and Bioavailability of the Major Metabolites of Crocus sativus L. Flower. Molecules (MDPI) 2019; 24:2827.
2. Ahmad RG, Soodabeh S, Mahdie KM. An overview on saffron, phytochemicals, and medicinal properties. Pharmacogn Rev 2010; 4(8):200–208.
3. Abu-Izneid T, Rauf A, Khalil AA, Olatunde A, Khalid A, Alhumaydhi FA, Aljohani ASM, Sahab Uddin M, Heydari M, Khayrullin M, Shariati MA, Aremu AO, Alafnan A, Rengasamy KRR. Nutritional and health beneficial properties of saffron ( Crocus sativus L): a comprehensive review. Crit Rev Food Sci Nutr 2020:17:1-24.
4. Azar H, Bibi MR, Hossein H. Saffron (Crocus sativus) petal as a new pharmacological target: a review. Iran J Basic Med Sci 2018;21(11):1091–1099.
5. Arezoo R, Azar H, Mahmoud H, Hamid RS. A Review of Potential Efficacy of Saffron (Crocus sativus L.) in Cognitive Dysfunction and Seizures. Prev Nutr Food Sci. 2019; 24(4): 363–372.
6. Samad G, Neda R. Saffron; An updated review on biological properties with special focus on cardiovascular effects. Biomed Pharmacother 2019; 109:21-27.
7. Bahmani F, Bathaie SZ, Aldavood SJ, Ghahghaei A. Inhibitory Effect of Crocin(s) on Lens α-Crystallin Glycation and Aggregation, Results in the Decrease of the Risk of Diabetic Cataract. Molecules 2016:21(2):143.
8. Srivastava R, Ahmed H, Dixit RK, Saraf SA. Crocus sativus L.: A comprehensive review. Pharmacogn Rev 2010; 4 (8): 200–208.
9. Andromachi L, Fani K, Irida P, Konstantinos D. Recent Advances on the Anticancer Properties of Saffron (Crocus sativus L.) and Its Major Constituents. Molecules 2021; 26:86.
10. Alessandra B, Martina F, Angelo AD. Geographical Classification of Italian Saffron (Crocus sativus L.) by Multi-Block Treatments of UV-Vis and IR Spectroscopic Data. Molecules 2020; 25(10): 2332.
11. Sharma M, Amit N, Nagori K, Soni S, Khushboo S. Development of quality control parameters of an ayurvedic formulation: ‘Ashwagandhadi Churna. Research J. Pharma. Dosage Forms and Tech. 2013; 5(2): 91-94.
12. Shahin Khan, Ajay Kumar Meena, A. K. Saluja, M. M. Padhi. Pharmacognostical and Physicochemical Evaluation of Anthelmintic an Ayurvedic Polyherbal Formulation: Krumighattini Tablet. Asian J. Research Chem. 8(11): 2015; 697-700.
13. Eslavath R, Harikrishna V, Kosuru N, Venkateshwarlu G, Sabat M, Kanakaiah K. Phytochemical Screening and TLC, UV-Spectrophotometer Study of Bougainvillea glabra. Asian J. Pharm. Ana. 3(3): pt. 2013; 83-85.
14. Housheh S, Trefi S, M. Fawaz Chehna. Identification and Characterization of Prasugrel Degradation Products by GC/MS, FTIR and 1H NMR. Asian J. Pharm. Ana. 2017; 7(2): 55-66.
15. Padmavathi, Akari Anjali, Nayaka Raghavendra Babu, P Ravi Kumar. Development and validation of new FTIR method for quantitative analysis of gliclazide in bulk and pharmaceutical dosage forms. Asian J. Research Chem. 2017; 10(3):377-382.
16. Verma SC, Subhani S, Vashishth E, Tiwari RK, Singh R, Pant P, Padhi MM, Dhiman KS. Comparative phytochemical study of root versus small branches of Desmodium gangeticum using High Performance Thin Layer Chromatographic UV detection Method. Asian J. Research Chem 8(4): 2015; 318-323.
17. Jain V, Tripti Jain, Swarnlata Saraf, S. Saraf. HPTLC method for routine quality control of Ayurvedic formulation Drakshadi gutika. Asian J. Pharm. Ana. 3(4): Oct. - Dec. 2013; 111-114.
18. Meghal Patel. Development and Validation of Simultaneous Estimation of Two Catecholamines in Combine Dosage Form by HPTLC Method. Asian J. Pharm. Ana. 4(2): 2014; 57-77.
19. A Rajasekaran, R Arivukkarasu, M Linda. Estimation of Andrographolide Content in Aqueous Extract of Siddha Formulations by HPTLC. Asian J. Pharm. Ana. 5(4): 2015; 206-208.
20. Priyanka Ghumare, Ramdas T. Dolas, Vandana Aher. Development of HPTLC Method for the Estimation of Andrgrapholide from Arjuna Tablet. Asian Journal of Pharmaceutical Analysis. 2021; 11(2):156-8.
21. Sachin U Rakesh, VR Salunkhe, PN Dhabale, KB Burade. HPTLC Method for Quantitative Determination of Gallic Acid in Hydroalcoholic Extract of Dried Flowers of Nymphaea Stellata Willd. Asian J. Research Chem. 2(2): 2009,131-134.
22. Bhope SG, Kuber VV, Patil MJ, Ghosh VK. Validated HPTLC Method for the Quantitation of Andrographolide from Raw Material and Pharmaceutical Dosage Form. Asian J. Research Chem. 2(3): 2009, 314-317.
23. Subash Chandra Verma, Sukriti Nigam, Chhoten Lal Jain, Pramila Pant, Madan Mohan Padhi, Ramesh Babu Devalla. Solvent Polarity Based Microwave Assisted Extraction of Ferulic Acid from Whole Plant of Cynodon dactylon (L.) And It’s Quantitative Determination by Developed and Validated HPTLC Method. Asian J. Research Chem. 4(9): 2011; 1460 -1465.
24. V. Jain, S.J. Daharwal, Tripti Jain, Swarnlata Saraf, S. Saraf. HPTLC methods for quantification of gallic acid in Bhuvneshvara vati for routine quality control. Asian J. Research Chem. 5(2): 2012; 193-196.
25. Preeti T, Rakesh KP. Development and Validation of HPTLC Method for Quantification of Quercetin and Rutin in Drakshasava. Asian J. Research Chem. 5(5): 2012; 681-686.
26. Sameera SP, Maryam V, Mohankumar JM, Anuj K, Kaamini R, Prashanth S, Pratap R. Saffron’omics’: The challenges of integrating omic technologies. Avicenna J Phytomed 2016;6(6):604-620.
27. Government of India, Ministry of Health and Family Welfare. The Ayurvedic pharmacopoeia of India Vol-3, Part-1. 1st ed. New Delhi: Ministry of Health and Family Welfare; 2001, p. 233-251.
28. Olga Orfanou, Maria Tsimidou.Evaluation of the colouring strength of saffron spice by UV—Vis spectrometry. Food Chemistry,57,3,1996,463-469
29. Leonardo S, Monica S, Maria G, Adalgisa B, Pasqualino T, Giacomo G. HPLC/PDA/ESI-MS Evaluation of Saffron (Crocus sativus L.) Adulteration. Natural Product Communications 2011; 6 (12):1873-1876.
30. ISO 3632-1 Saffron (Crocus sativus L.), Part 1 (Specification) ISO; Geneva, Switzerland: 2011
31. ISO 3632-2 Saffron (Crocus sativus L.), Part 2 (Test Methods) ISO; Geneva, Switzerland: 2010
32. Fei YL, Thet TH, Gabriel AA. ATR-FTIR and Spectrometric Methods for the Assay of Crocin in Commercial Saffron Spices (Crocus savitus L.). International Journal of Food Properties 2015; 18(8): 1773-1783.
33. Barbara PS, Grzegorz C, Lukasz A. The Application of NMR Spectroscopy and Chemometrics in Authentication of Spices. Molecules (MDPI) 2021;26:382.
34. Yoshinori U, Naoki S, Kyoko S, Young SY, Akira K. Neocrocin A: a Novel Crocetin Glycoside with a Unique System for Binding Sugars Isolated from Gardenia Yellow. Chem.Pharm. Bull 2007;55(11):1643-1646.
35. Anatoly PS, Simone C, Donatella C, Silvia V, Agata T, Federico M, Luisa M. Saffron Samples of Different Origin: An NMR Study of Microwave-Assisted Extracts. Foods 2014;3:403-419.