Author(s): Nurul Haque, Arvind Agrawal, Atanu Kumar Pati

Email(s): dr.arvind02@gmail.com

DOI: 10.52711/0975-4385.2023.00012   

Address: Nurul Haque1, Arvind Agrawal2*, Atanu Kumar Pati3
1Department of Botany, Govt. Kaktiya P.G. College, Jagdalpur - 494 001.
2UGC - Human Resource Development Centre, Pt. Ravishankar Shukla University, Raipur - 492 010.
3Executive Member of Higher Education, Odisha Government, Bhubneshwar.
*Corresponding Author

Published In:   Volume - 15,      Issue - 1,     Year - 2023


ABSTRACT:
Seeds are more resistant and contain more nutrition for the developing embryo as compared to spores. A seed is an embryonic plant encased in a defensive external covering. It develops at the end of sexual reproduction in Gymnosperms and Angiosperms. Fundamentally, each seed contains an embryonic plant, endosperm to nourish the embryo, and an outer seed coat to protect the embryo from unfavourable environmental conditions. EMFr is a non-ionizing and non-thermal radiation. It is classified as Extremely Low Frequency (ELF) (30-300 Hz), Voice Frequency (VF) (300-3000 Hz), Very Low Frequency (VLF) (3-30 KHz), Medium Frequency (MF) (0.3-3 MHz), High Frequency (HF) (3-30 MHz), Very High Frequency (VHF) (3-300 MHz), Ultra High Frequency (UHF) (300-3000 MHz), Super High Frequency (SHF) (3-30 GHz), Extremely High Frequency (EHF) (30-300 GHz) SHF and EHF are microwaves. As some studies suggested an improvement in seed germination after EMFr exposure, it can be exploited in agriculture as well as in horticulture. We can use EMFr on recalcitrant seeds also to improve their storage behaviour.


Cite this article:
Nurul Haque, Arvind Agrawal, Atanu Kumar Pati. A Mini Review on effects of Microwave on Seed Germination. Research Journal of Pharmacognosy and Phytochemistry. 2023; 15(1):82-6. doi: 10.52711/0975-4385.2023.00012

Cite(Electronic):
Nurul Haque, Arvind Agrawal, Atanu Kumar Pati. A Mini Review on effects of Microwave on Seed Germination. Research Journal of Pharmacognosy and Phytochemistry. 2023; 15(1):82-6. doi: 10.52711/0975-4385.2023.00012   Available on: https://rjpponline.org/AbstractView.aspx?PID=2023-15-1-12


REFERENCES:
1.    Balmori, A. (2010). The incidence of electromagnetic pollution on wild mammals: A new “poison” with a slow effect on nature? The Environmentalist, 30(1), 90-97. doi: 10.1007/s10669-009-9248-y
2.    BBaskin, J. M., and Baskin, C. C. (2004). A classification system for seed dormancy. Seed Science Research, 14(01), 1-16.
3.    Bewley, J. D., Bradford, K., Hilhorst, H., and nonogaki, h. (2012). Seeds: Physiology of Development, Germination and Dormancy, 3rd Edition: Springer New York.
4.    Bianchi, C., and Meloni, A. (2007). Natural and man-made terrestrial electromagnetic noise: an outlook. Annals of Geophysics, 50(3), 435-445.
5.    Bradbeer, J. (1988). Seed dormancy and germination.
6.    Brodie, G., Ryan, C., and Lancaster, C. (2012). The Effect of Microwave Radiation on Prickly Paddy Melon (Cucumis myriocarpus). International Journal of Agronomy, 10. doi: 10.1155/2012/287608
7.    De Souza, A., García, D., Sueiro, L., and Gilart, F. (2014). Improvement of the seed germination, growth and yield of onion plants by extremely low frequency non-uniform magnetic fields. Scientia Horticulturae, 176, 63-69.
8.    Halgamuge, M. N., Yak, S. K., and Eberhardt, J. L. (2015). Reduced growth of soybean seedlings after exposure to weak microwave radiation from GSM 900 mobile phone and base station. Bioelectromagnetics, 36(2), 87-95. doi: 10.1002/BEM.21890
9.    Huang, H.-H., and Wang, S.-R. (2008). The effects of inverter magnetic fields on early seed germination of mung beans. Bioelectromagnetics, 29, 649-657.
10.    Kew, R. B. G. (2017). Seed Information Database (SID). Version 7.1.   http://data.kew.org/sid/
11.    Khalafallah, A., and Sallam, S. M. (2009). Response of maize seedlings to microwaves at 945 MHz. Romanian J. Biophys, 19(1), 49-62.
12.    Nikolaev, M. G. (1967). Physiology of deep dormancy: Наука [Ленинградское отд-ние].
13.    Parsi, N. (2007). Electromagnetic effects on soybeans. (Master of Science), University of Missouri, Columbia.   
14.    Pietruszewski, S., Muszynski, S., and Dziwulska, A. (2007). Electromagnetic fields and electromagnetic radiation as non-invasive external stimulants for seeds (selected methods and responses). International Agrophysics, 21(1), 95-100.
15.    Radhakrishnan, R., and Ranjitha Kumari, D. B. (2012). Pulsed magnetic field: a contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiology and Biochemistry, 51, 139-144. doi: 10.1016/j.plaphy.2011.10.017
16.    Radzevičius, A., Sakalauskienė, S., Dagys, M., Simniškis, R., Karklelienė, R., Bobinas, Č., and Duchovskis, P. (2013). The effect of strong microwave electric field radiation on:(1) vegetable seed germination and seedling growth rate. Zemdirbyste-Agri, 100, 179-184.
17.    Ragha, L., Mishra, S., Ramachandran, V., and Bhatia, M. S. (2011). Effects of low-power microwave fields on seed germination and growth rate. Journal of Electromagnetic Analysis and Applications, 165-171.
18.    Rochalska, M. (2008). The influence of low frequency magnetic field upon cultivable plant physiology. Nukleonika, 53, 17-20.
19.    Shashurin, M. M., Prokopiev, I. A., Shein, A. A., Filippova, G. V., and Zhuravskaya, A. N. (2014). Physiological responses of Plantago media to electromagnetic field of power-line frequency (50 Hz). Russian Journal of Plant Physiology, 61(4), 484-488. doi: 10.1134/S1021443714040177
20.    Siegrist, M., Earle, T. C., Gutscher, H., and Keller, C. (2005). Perception of mobile phone and base station risks. Risk Analysis, 25(5), 1253-1264.
21.    Singh, G. (2016). Plant Systematics, 3/ed.: An Integrated Approach: CRC Press.
22.    Sukiasyan, A., Mikaelyan, Y., and Ayrapetyan, S. (2012). Comparative study of non-ionizing and ionizing radiation effect on hydration of winter wheat seeds in metabolic active and inactive states. The Environmentalist, 32(2), 188-192. doi: 10.1007/s10669-012-9392-7
23.    Talei, D., Valdiani, A., Maziah, M., and Mohsenkhah, M. (2013). Germination response of MR 219 rice variety to different exposure times and periods of 2450 MHz microwave frequency. The Scientific World Journal, 2013, 408026-408026. doi: 10.1155/2013/408026
24.    Tkalec, M., Malarić, K., Pavlica, M., Pevalek-Kozlina, B., and Vidaković-Cifrek, Ž. (2009). Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L. Mutation Research-genetic Toxicology and Environmental Mutagenesis, 672(2), 76-81. doi: 10.1016/j.mrgentox.2008.09.022
25.    Ungureanu, E., Maniu, C. L., Vântu, s., and Cretescu, I. (2009). Consideration on the peroxidase activity during Hippophae rhamnoides seeds germination exposed to radiofrequency electromagnetic field influence. Analele Stiintifice ale Universitatii "Alexandru Ioan Cuza" din Iasi Sec. II a. Genetica si Biologie Moleculara, 10(2), 29-34.
26.    Verschaeve. (2014). Environmental Impact of Radiofrequency Fields from Mobile Phone Base Stations. Critical Reviews in Environmental Science and Technology, 44(12), 1313-1369. doi: 10.1080/10643389.2013.781935
27.    Vian, A., Davies, E., Gendraud, M., and Bonnet, P. (2016). Plant Responses to High Frequency Electromagnetic Fields. Biomed Res Int, 2016, 13. doi: 10.1155/2016/1830262
28.    Vgian, A., Faure, C., Girard, S., Davies, E., Hallé, F., Bonnet, P., Paladian, F. (2007). Plants Respond to GSM-Like Radiation. Plant Signaling and Behavior, 2(6), 522-524.


Recomonded Articles:

Author(s): Anshuman Singh, Bhupendra Vyas

DOI: 10.5958/0975-4385.2018.00052.3         Access: Open Access Read More

Author(s): Kavitha M, Vadivu R, Radha R

DOI: 10.5958/0975-4385.2015.00037.0         Access: Open Access Read More

Author(s): Gaurav Kumar, Indu Sharma

DOI:         Access: Open Access Read More

Author(s): Bhavna Patel, Gopi Patel, Samir Shah, Shraddha Parmar

DOI: 10.5958/0975-4385.2017.00046.2         Access: Open Access Read More

Author(s): Puneet Kumar Rai, Dev Raj Sharma, Amit Sharma

DOI: 10.5958/0975-4385.2015.00029.1         Access: Open Access Read More

Author(s): Saudagar RB, Sambathkumar R, Bachhav R S

DOI:         Access: Open Access Read More

Author(s): K Mekala, R Radha

DOI: 10.5958/0975-4385.2015.00035.7         Access: Open Access Read More

Author(s): S. Mohan Raj*, Shahid Mohammed, Vinoth Kumar S, Santhosh Kumar C, Subal Debnath

DOI:         Access: Open Access Read More

Author(s): S. Sakthi Priyadarsini, R Vadivu, N Jayshree

DOI:         Access: Open Access Read More

Author(s): Satish Kumar B.N., Gobinda Mohan Behera, Malay Baidya

DOI:         Access: Open Access Read More

Author(s): Lenkalapally Matsyagiri, Kommu Sudhakar, Takkadpelliwar Santoshi, Masna Nagarjuna , N. L. Gowrishankar

DOI:         Access: Open Access Read More

Author(s): Shantha Sheela Nagarajan, Muthusamy Periyannan , Radha Ramalingam

DOI: 10.5958/0975-4385.2016.00013.3         Access: Open Access Read More

Author(s): Umesh Annappan, Vijaya Bharathi Rajkishore, Radha Ramalingam

DOI: 10.5958/0975-4385.2015.00034.5         Access: Open Access Read More

Author(s): D. Benito Johnson, C. Senthil Kumar, C. Glince Raphael, R. Venkatnarayanan and Siraj Kattupparuthi

DOI:         Access: Open Access Read More

Author(s): R. Ramasubramania Raja, K. Haranadha Baba

DOI: 10.5958/0975-4385.2019.00025.6         Access: Open Access Read More

Author(s): Anjali Soni, Patel Femida, Preeti Sharma

DOI: 10.5958/0975-4385.2017.00003.6         Access: Open Access Read More

Author(s): Utkarsh U. Bhamare, Yogesh S. Mali, Azam Z. Shaikh

DOI: 10.5958/0975-4385.2020.00041.2         Access: Open Access Read More

Author(s): Asmita Gautam, Amla Batra

DOI:         Access: Open Access Read More


Recent Articles




Tags