Author(s): Waill A. Elkhateeb, Dina E. El-Ghwas, Abdu Ghalib Al kolaibe, Muhammad Akram, Ghoson M. Daba


DOI: 10.52711/0975-4385.2022.00010   

Address: Waill A. Elkhateeb1*, Dina E. El-Ghwas1, Abdu Ghalib Al kolaibe2, Muhammad Akram3, Ghoson M. Daba1
1Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt.
2Microbiology Department, Faculty of Science, Taiz University, Taiz, Yemen.
3Department of Eastern Medicine Government College University Faisalabad -Pakistan.
*Corresponding Author

Published In:   Volume - 14,      Issue - 1,     Year - 2022

Yeasts are eukaryotic microorganisms that are existing in a wide range of habitats, thanks to their ability to adapt even in extreme locations and conditions. Moreover, the unicellular nature of yeasts makes them better suited for deep liquid substrates or moist and uneven surfaces. Till now, about 1500 species of yeasts are described, and the genus Saccharomyces is the well-studied genus of all the yeasts in terms of physiology and genetics. In this review, we elucidate the role of yeasts as biotechnological tool and their current and potential applications. We also highlighted the features, and industrial application of some marine yeasts. Furthermore, describing rarely basidiomycetous yeast involved in different applications. Contributions of yeasts and their enzymes in food, industrial, and pharmaceuticals fields were also discussed. Finally, employment of yeasts in biotransformation process was show.

Cite this article:
Waill A. Elkhateeb, Dina E. El-Ghwas, Abdu Ghalib Al kolaibe, Muhammad Akram, Ghoson M. Daba. The Superiority of Yeast Secondary Metabolites, from Industrial applications, Biological activities to Pharmaceutical potential. Research Journal of Pharmacognosy and Phytochemistry. 2022; 14(1):43-9. doi: 10.52711/0975-4385.2022.00010

Waill A. Elkhateeb, Dina E. El-Ghwas, Abdu Ghalib Al kolaibe, Muhammad Akram, Ghoson M. Daba. The Superiority of Yeast Secondary Metabolites, from Industrial applications, Biological activities to Pharmaceutical potential. Research Journal of Pharmacognosy and Phytochemistry. 2022; 14(1):43-9. doi: 10.52711/0975-4385.2022.00010   Available on:

1.    Shivaji S, Prasad GS. (2009). Antarctic yeasts: biodiversity and potential applications. In Yeast biotechnology: diversity and applications (pp. 3-18). Springer, Dordrecht.‏
2.    Damare S, Raghukumar C, Raghukumar S. (2006). Fungi in deep-sea sediments of the Central Indian Basin. Deep Sea Research Part I: Oceanographic Research Papers, 53(1): 14-27.‏
3.    Raghukumar S. (2017). Fungi in coastal and oceanic marine ecosystems (Vol. 378). New York, NY, USA, Springer.‏
4.    Buzzini P, Turchetti B, Yurkov A. (2018). Extremophilic yeasts: the toughest yeasts around?. Yeast, 35(8): 487-497.‏
5.    Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S. (2003). A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles, 7(6): 435-442.‏
6.    Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S. (2005). Invertase and a-glucosidase production by the endemic Antarctic marine yeast Leucosporidium antarcticum. Pol Polar Res., 26: 125–136.
7.    McLaughlin DJ, Hanson Jr RW, Frieders EM, Swann EC, Szabo LJ. (2004). Mitosis in the yeast phase of the basidiomycetes Bensingtonia yuccicola and Stilbum vulgare and its phylogenetic implications. American journal of botany, 91(6): 808-815.‏
8.    Satyanarayana T, Kunze G. (Eds.). (2009). Yeast biotechnology: diversity and applications (Vol. 78). Dordrecht: Springer.‏
9.    Boekhout T, Kurtzman CP. (1996). Principles and methods used in yeast classification, and an overview of currently accepted yeast genera. In: Wolf K, editor. Nonconventional Yeasts in Biotechnology. Germany: Springer-Verlag Berlin Heidelberg, 1-81.
10.    Lachance MA. (2016). Paraphyly and (yeast) classification. Int J Syst Evol Microbiol 66: 4924-9.
11.    Moubasher AH. (1993). Soil fungi in Qatar and other Arab countries. The Centre for Scientific and Applied Research, University of Qatar.‏
12.    Elkhateeb WA, Daba GM. (2018). Where to Find? A Report for Some Terrestrial Fungal Isolates, and Selected Applications Using Fungal Secondary Metabolites. Biomed Journal Science &Technology Research, 4(4): 1-4.
13.    Elkhateeb WA, Zohri AA, Mazen M, Hashem M, Daba GM. (2016). Investigation of diversity of endophytic, phylloplane and phyllosphere mycobiota isolated from different cultivated plants in new reclaimed soil, Upper Egypt with potential biological applications, Inter J MediPharm Res., 2(1): 23-31.
14.    Elkhateeb WA. (2005). Some mycological, phytopathological and physiological studies on mycobiota of selected newly reclaimed soils in Assiut Governorate, Egypt (M. Sc. Thesis, Faculty of Science, Assuit University, Egypt. 2005; p 238.
15.    Chi Z, Chi Z, Zhang T, Liu G, Li J, Wang X. (2009). Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol Adv., 27: 236–255.
16.    Zaky AS, Tucker G, Daw ZY, Du, C. (2014). Marine yeast isolation and industrial application. FEMS Yeast Research, 14(6): 813-825.‏
17.    Kurtzman CP, Fell JW, Boekhout T. (Eds.). (2010). The yeasts. Elsevier.‏ 2354.
18.    Branduardi, P. and Porro, D.; Yeast Biotechnology, in Yeast: Molecular and Cell Biology, Second Edition. Edited by Horst Feldmann. 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co.
19.    Demain, A.L., Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms, Biotechnology Advances, 27: 297–306.
20.    Çelik, E., Çalık, P., 2012. Production of recombinant proteins by yeast cells, Biotechnology Advances, 30: 1108–1118.
21.    Porro D, Gasser B, Fossati T, Maurer M, Branduardi P, Sauer M, Mattanovich D. (2011). Production of recombinant proteins and metabolites in yeasts, Appl Microbiol Biotechnol., 89: 939–948.
22.    Foury F. (1997). Human genetic diseases: a cross-talk between man and yeast. Gene, 195: 1–105.
23.    Marton MJ, DeRisi JL, Bennett HA. (1998). Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 4: 1293–13016.
24.    Tong AH, Lesage G, Bader GD. (2004). Global mapping of the yeast genetic interaction network. Science, 303: 414–4197.
25.    Lum PY, Armour CD, Stepaniants SB. (2004). Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell, 116: 121–1378.
26.    Birrell GW, Giaever G, Chu AM. (2001). Agenome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity. Proc Natl Acad Sci USA, 98: 12608–12613.
27.    Nelson G, Duckham SC, Crothers M. (2006). Microencapsulation in yeast cells and applications in drug delivery. ACS Symposium Series, 923: 268-281.
28.    Gaber RF, Copple DM, Kennedy BK. (1989). The yeast gene ERG6 is required for nor-mal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol Cell Biol., 9: 3447–3456.
29.    Balzi E, Goffeau A. (1995). Yeast multidrug resistance: the PDR network. J Bioenerg Bio-membr, 27: 71–76
30.    Dunstan HM, Ludlow C, Goehle S. (2002). Cell-based assays for identification of novel double-strand break inducing agents. J Natl Cancer Inst., 94: 88–94.
31.    Li H, Chi Z, Duan X, Wang L, Sheng J, Wu L (2007) Glucoamylase production by the marine yeast Aureobasidium pullulans N13d and hydrolysis of potato starch granules by the enzyme. Process Biochem., 42: 462–465.
32.    Li H, Chi Z, Wang X, Ma C (2007) Amylase production by the marine yeast Aureobasidium pullulans N13d. J Ocean Univ China, 6: 60–65.
33.    Ramirez-Orozco M, Hernandez-Saavedra NY, Ascencio Valle F, Acosta Gonzalez B, Ochoa JL. (1998). Cell yield and superoxide dismutase activity of the marine yeast Debaryomyces hansenii under different culture conditions. J Mar Biotechnol., 6: 255–259.
34.    Biely P, Vrsanska M, Kratky Z. (1981). Mechanisms of substrate digestion by endo-1,4-beta-xylanase of Cryptococcus albidus. Eur J Biochem., 119: 565-571.
35.    Nakase T, Sukuzi M, Hamamoto M, Takashima M, Hatano T, Fukui S. (1996). A taxonomic study on cellulolytic yeasts and yeast-like organisms isolated in Japan. II. The genus Cryptococcus. J Gen Appl Microbiol., 42: 7-15.
36.    De Mot R, Demeersman M, Verachtert H (1984) Comparative study of starch degradation and amylase production by non-ascomycetous yeast species. Syst Appl MicrobioI., 5: 421-432.
37.    De Mot R, Verachtert H. (1985). Purification and characterization of extracellular amylolytic enzymes from the yeast Filobasidium capsuligenum. Appl Environ MicrobioI., 50: 1474-1482.
38.    Ratledge C, Evans CT. (1989). Lipids and their metabolism. In: Rose AH, Harrison JS (eds) The yeasts, vol 3. Metabolism and physiology of yeasts, 2nd edn. Academic Press, London, pp 367-455.
39.    Rolph CE, Moreton RS, Harwood JL (1989). Acyl lipid metabolism in the oleaginous yeast Rhodotorula gracilis (CBS 3043). Lipids, 24: 715-720.
40.    Reiser J, Ochsner UA, Kalin M, Glumoff V, Fiechter A (1996) Trichosporon. In: Wolf K (ed) Nonconventional yeasts in biotechnology. A handbook. Springer, Berlin Heidelberg New York, 581-606.
41.    Ykema A, Verbree EC, Kater MM, Smit H. (1988). Optimization of lipid production in the oleaginous yeast Apiotrichum curvatum in whey permeate. Appl Microbiol Biotechnol., 29: 211-218.
42.    Ykema A, Verbree EC, Nijkamp HJH, Smit H. (1989). Isolation and characterization of fatty acid auxotrophs from the oleaginous yeast Apiotrichum curvatum. Appl Microbiol Biotechnol., 32: 76-84.
43.    Kitamoto D, Akiba S, Hioki C, Tabuchi T. (1990). Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica. Agric Bioi Chern., 54: 31-36.
44.    Kitamoto D, Akiba S, Hioki C, Tabuchi T. (1990). Production of mannosylerythritol lipids by Candida antarctica from vegetable oils. Agric Bioi Chern., 54: 37-40.
45.    Bjorkling F, Godtfredsen SE, Kirk O. (1991). The future impact of industrial lipases.  Tibtech., 9: 360-363.
46.    Waites MJ, Morgan NL, Rockey JS, Higton G. (2009). Industrial microbiology: an introduction. John Wiley & Sons.
47.    Verstrepen KJ, Chambers PJ, Pretorius IS. (2006). The development of superior yeast strains for the food and beverage industries: challenges, opportunities and potential benefits. In Yeasts in food and beverages (pp. 399-444). Springer, Berlin, Heidelberg.‏
48.    Erten H, Ağirman B, Gündüz C, Çarşanba E, Sert S, Bircan S, Tangüler H. (2014). Importance of yeasts and lactic acid bacteria in food processing. In Food Processing: Strategies for Quality Assessment (pp. 351-378). Springer, New York, NY.
49.    Walker GM, Stewart GG. (2016). Saccharomyces cerevisiae in the production of fermented beverages. Beverages, 2(4): 30.‏
50.    Maicas, S. (2020). The role of yeasts in fermentation processes.‏ Microorganisms, 8(8): 1142.
51.    Havenaar R, Huis T, Veld J. (1992). Probiotics: a general view. In: Wood B, ed. The Lactic Acid Bacteria in Health and Disease, London, UK: Elsevier Applied Science, 209–24.
52.    Czerucka D, Piche T, Rampal P. (2007). Yeast as probiotics–Saccharomyces boulardii. Alimentary pharmacology & therapeutics, 26(6): 767-778.
53.    Sazawal S, Hiremath G, Dhingra U. (2006). Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomized, placebo-controlled trials. Lancet Inf Dis., 6: 374–82.
54.    Siddiqui MS, Thodey K, Trenchard I, Smolke CD. (2012). Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 12: 144 – 170.
55.    Nassiri-Koopaei N, Faramarzi MA. (2015). Recent developments in the fungal transformation of steroids. Biocatalysis and Biotransformation, 33(1): 1-28.
56.    Adamski J, Jakob FJ. (2001). A guide to 17 β-hydroxysteroid dehydrogenases. Mol Cell Endocrinol., 171: 1 – 4.
57.    Vico P, Cauet G, Rose K, Lathe R, Degryse E. (2002). Dehydroepiandrosterone (DHEA) metabolism in Saccharomyces cerevisiae expressing mammalian steroid hydroxylase CYP7B: ayr1p and Fox2p display 17 β-hydroxysteroid dehydrogenase activity. Yeast 19: 873 – 886.
58.    Singer Y, Shity H, Bar R. (1991). Microbial transformations in a cyclodextrin medium. Part 2. Reduction of androstenedione to testosterone by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 35: 731 – 737.
59.    Pajic T, Vitas M, Zigon D, Pavko A, Kelly SL, Komel R. (1999). Biotransformation of steroids by the fi ssion yeast Schizosaccharomyces pombe. Yeast 15: 639 – 645.
60.    Hu YM, Yu ZL, Fong WF. (2011). Stereoselective Biotransformation of Timosaponin A-III by Saccharomyces cerevisiae. J Microbiol Biotechnol., 21: 582 – 589.
61.    Lane S, Dong J, Jin YS. (2018). Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae. Bioresource technology, 260: 380-394.
62.    Yan Y, Bu C, Huang X, Ouyang J. (2019). Efficient whole‐cell biotransformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae NL22. Journal of Chemical Technology & Biotechnology, 94(12): 3825-3831.
63.    Liu Y, Yuan W, Lu Y, Liu SQ. (2021). Biotransformation of spent coffee grounds by fermentation with monocultures of Saccharomyces cerevisiae and Lachancea thermotolerans aided by yeast extracts. LWT, 138: p.110751.
64.    Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S. (2009). Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63: 1231–1234.
65.    Bankar A, Kumar A, Zinjarde S (2009). Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol., 84: 847–865.
66.    Subramanian M, Alikunhi N, Kandasamy K (2010) In vitro synthesis of silver nanoparticles by marine yeasts from coastal mangrove sediment. Adv Sci Lett., 3: 428–433.
67.    Pensupa N, Jin M, Kokolski M, Archer DB, Du C (2013). A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresour Technol., 149: 261–267.
68.    Urano N, Yamazaki M, Ueno R. (2001). Distribution of halotolerant and/or fermentative yeasts in aquatic environments. J Tokyo Univ Fish, 87: 23–30.
69.    Kathiresan K, Saravanakumar K, Senthilraja P (2011). Bio-ethanol production by marine yeasts isolated from coastal mangrove sediment. Int Multidiscip Res., J 1: 19–24.
70.    Obara N, Ishida M, Hamada-Sato N, Urano N. (2012). Efficient bioethanol production from scrap paper shredder by a marine Saccharomyces cerevisiae derived C-19. Stud Sci Technol., 1: 127–132.
71.    Chi Z, Liu J, Ji J, Meng Z. (2003). Enhanced conversion of soluble starch to trehalose by a mutant of Saccharomycopsis fibuligera sdu. J Biotechnol., 102: 135–141.
72.    Du C, Webb C. (2011). Cellular systems. Comprehensive Biotechnology, Vol. 2, 2nd edn (Murray MY, ed.), pp. 11–23. Academic Press, Burlington, VT.
73.    Anwar A, Dhanjal DS, Singh R, Chopra C. (2020). Isolation and Biochemical Characterization of an Acidophilic, Detergent-Stable Amylase-producing strain of Providencia rettgeri from the soil of Patnitop region, J&K. Research Journal of Pharmacy and Technology, 13(12): 5958-5962.‏
74.    Sarkar A, Philip AM, Thakker DP, Wagh MS, Rao KB. (2020). In vitro Antioxidant activity of extracellular L-glutaminase enzyme isolated from marine yeast Rhodotorula sp. DAMB1. Research Journal of Pharmacy and Technology, 13(1): 09-215.‏
75.    Ray A. (2012). Application of lipase in industry. Asian Journal of Pharmacy and technology, 2(2): 33-37.‏
76.    Ragavan ML, Patnaik N, Muniyasamy R, Roy A, Deo L, Das N. (2019). Biochemical characterization and enzymatic profiling of potential probiotic yeast strains. Research Journal of Pharmacy and Technology, 12(8): 3941-3944.‏
77.    Kharat PP, Ramsaran Yadav S, Ragavan ML, Das N. (2018). Isolation and Characterization of Exopolysaccharides From Yeast Isolates. Research Journal of Pharmacy and Technology, 11(2): 537-542.‏
78.    Gopi K, Jayaprakashvel M. (2017). Distribution of Endophytic Fungi in Different Environments and Their Importance. Research Journal of Pharmacy and Technology, (10)11: 4102-4104.‏

Recomonded Articles:

Author(s): Subhashis Debnath, M. Niranjan Babu, Mahesh Dega, Bharathi. K, Jyothsna. T, Revathi. D, Kishore Kumar. T.S

DOI:         Access: Open Access Read More

Author(s): K Mekala, R Radha

DOI: 10.5958/0975-4385.2015.00035.7         Access: Open Access Read More

Author(s): Shikha Srivastava, Nidhi Mishra

DOI:         Access: Open Access Read More

Author(s): Varun Chaddha, Avinash Singh Kushwah, Vaibhav Srivastava

DOI:         Access: Open Access Read More

Author(s): Akash P. Dahake, Arun B. Joshi, Krunal M. Patel

DOI:         Access: Open Access Read More

Author(s): Patil SM, Patil MB, Sapkale GN, Umbare RP

DOI:         Access: Open Access Read More

Author(s): Hemant Badwaik, Tapan Kumar Giri , D.K. Tripathi , Mukesh Singh, Abdul Hanif Khan

DOI:         Access: Open Access Read More

Author(s): Pradeep Sahu, Munglu Matlam, Ravindra Dhar Dubey, Shweta Paroha, Shilpi Chatterji, Shekhar Verma, Tanushree Chatterjee

DOI:         Access: Open Access Read More

Author(s): Mohini Upadhye, Parikshit Gandhi, Mohini Phanse

DOI:         Access: Open Access Read More

Author(s): Dharmesh Sharma, Deepak Prashar, Ruchika Chauhan, Madhu Chauhan, Neha Jasrotia, Sanjay Saklani

DOI:         Access: Open Access Read More

Author(s): Stellaa Robertson,Narayanan N

DOI:         Access: Open Access Read More

Author(s): Anita S. Wanjari, Dinesh S. Wanjari

DOI: 10.5958/0975-4385.2019.00003.7         Access: Open Access Read More

Author(s): Pradeep Sahu, Kiran Sahu, Ravindra Dhar Dubey, Shilpi Chatterjee , Tanushree Chatterjee

DOI:         Access: Open Access Read More

Author(s): Anil Kumar Aher, Subodh Pal, Sadahev Yadav, Umesh Patil, Snehendu Bhattacharya

DOI:         Access: Open Access Read More

Author(s): Shubhashree M N, Venkateshwarlu G, Doddamani S H

DOI:         Access: Open Access Read More

Research Journal of Pharmacognosy and Phytochemistry (RJPP) is an international, peer-reviewed journal, devoted to pharmacognosy...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0975-4385 

Recent Articles