Author(s): Waill A. Elkhateeb, Marwa O. Elnahas, Ghoson M. Daba, Abdel-Nasser A. Zohri

Email(s): waillahmed@yahoo.com

DOI: 10.52711/0975-4385.2021.00025   

Address: Waill A. Elkhateeb1*, Marwa O. Elnahas1, Ghoson M. Daba1, Abdel-Nasser A. Zohri2
1Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt.
2Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt.
*Corresponding Author

Published In:   Volume - 13,      Issue - 3,     Year - 2021


ABSTRACT:
The genus Trichoderma is multicultural soil-borne fungi found in different ecosystems. They are highly successful colonizers of their habitats. Genus Trichoderma is capable of dealing with various environments such as compost, agricultural soils, rhizosphere, and waste material. Therefore, different strains of Trichoderma have been applied in agriculture, bioremediation, waste management, and biotechnology. Many Trichoderma species act as biological control agents and plant growth promoters. Additionally, the genus Trichoderma is a new fungal source for the production of cyclosporin A as well as various hydrolytic enzymes with industrial importance.


Cite this article:
Waill A. Elkhateeb, Marwa O. Elnahas, Ghoson M. Daba, Abdel-Nasser A. Zohri. Biotechnology and Environmental applications of Trichoderma spp. Research Journal of Pharmacognosy and Phytochemistry. 2021; 13(3):149-7. doi: 10.52711/0975-4385.2021.00025

Cite(Electronic):
Waill A. Elkhateeb, Marwa O. Elnahas, Ghoson M. Daba, Abdel-Nasser A. Zohri. Biotechnology and Environmental applications of Trichoderma spp. Research Journal of Pharmacognosy and Phytochemistry. 2021; 13(3):149-7. doi: 10.52711/0975-4385.2021.00025   Available on: https://rjpponline.org/AbstractView.aspx?PID=2021-13-3-8


REFERENCES:
1.    Brotman Y, Kapuganti JG, Viterbo A. Trichoderma. Current Biology 2010; 20, R390-R391.
2.    Poveda J, Hermosa R, Monte E, Nicolás C. Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Scientific reports, 2019; 9, 1-11.
3.    Druzhinina I, Seidl-Seiboth V, Herrera-Estrella A, Horwitz, BA, Kenerley CM, Monte E, Mukherjee P, Zeilinger S, Grigoriev I, Kubicek C. Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology 2011; 9, 749-759.
4.    Harman G, Howell C, Viterbo A, Chet I, Lorito M. Trichoderma spp.—opportunistic, avirulent plant symbionts. Nature reviews microbiology 2004, 2, 43-56.
5.    Tripathi P, Singh P, Mishra A, Chauhan P, Dwivedi S, Bais R, Tripathi R. Trichoderma: a potential bioremediator for environmental clean up. Clean Technologies and Environmental Policy 2013; 15, 541-550.
6.    Mulè P, Melis P. Methods for remediation of metal‐contaminated soils: preliminary results. Communications in soil science and plant analysis 2000; 31, 3193-3204.
7.    Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y. Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere 2008; 71, 1769-1773.
8.    Errasquın E, Vazquez C. Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 2003; 50, 137-143.
9.    Ezzi M, Lynch JM. Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzyme and Microbial Technology 2005; 36, 849-854.
10.    Harman G, Lorito M, Lynch J. Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Adv Appl Microbiol., 2004; 56, 313-330.
11.    Tripathi R, Srivastava S, Mishra S, Singh N, Tuli R, Gupta D, Maathuis FJ. Arsenic hazards: strategies for tolerance and remediation by plants. Trends in biotechnology 2007; 25, 158-165.
12.    Dobler R, Saner M, Bachofen R. Population changes of soil microbial communities induced by hydrocarbon and heavy metal contamination. Bioremed J., 2000; 4, 41-56.
13.    Kamizono A, Nishizawa M, Teranishi Y, Murata K, Kimura A. Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae. Molec Gener Genet MGG 1989; 219, 161-167.
14.    Presta A, Stillman MJ. Incorporation of copper into the yeast Saccharomyces cerevisiae. Identification of Cu (I)-metallothionein in intact yeast cells. J Inorg Biochem., 1997; 66, 231-240.
15.    Lorito M, Woo S, Harman G. and Monte E. Translational research on Trichoderma: from'omics to the field. Ann Rev Phytopathol., 2010; 48, 395-417.
16.    Ting A, Choong CC. Bioaccumulation and biosorption efficacy of Trichoderma isolate SP2F1 in removing copper (Cu (II)) from aqueous solutions. World J Microbiol  Biotechnol., 2009; 25, 1431-1437.
17.    Zeng X, Su S, Jiang X, Li L, Bai L. Zhang Y. Capability of pentavalent arsenic bioaccumulation and biovolatilization of three fungal strains under laboratory conditions. Clean–Soil, Air, Water 2010; 38, 238-241.
18.    Cerniglia CE. Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin  Biotechnol., 1993, 4, 331-338.
19.    Matsubara M, Lynch J. and De Leij F. A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enzyme and Microbial Technology 2006, 39, 1365-1372.
20.    Oros G, Naár Z. and Cserháti T. Growth response of Trichoderma spp. to organic solvents. Molecular informatics 2011, 30, 276-285.
21.    Mishra A. and Nautiyal CS. Functional diversity of the microbial community in the rhizosphere of chickpea grown in diesel fuel-spiked soil amended with Trichoderma ressei using sole-carbon-source utilization profiles. World J Microbiol Biotechnol 2009, 25, 1175-1180.
22.    ASASI M, Fourcade F, Geneste F, Floner D, MACHI R. and Amrane A. Combined electrochemical and biological treatment for pesticide degradation–Application to phosmet. 2011: 1-10.
23.    Badawy M, Ghaly M. and Gad-Allah TA. Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. Desalination 2006, 194, 166-175.
24.    Zhou X, Xu S, Liu L. and Chen J. Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration (REMI). Bioresour Technol., 2007, 98, 2958-2962.
25.    Katayama A. and Matsumura F. Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environmental Toxicology and Chemistry: An Interna J 1993, 12, 1059-1065.
26.    Tian L. and Chen F. Carbendazim biodegradation characteristics of Trichoderma. Acta Pedologica Sinica 2009, 46, 1127-1131.
27.    Tang J, Liu L, Huang X, Li Y, Chen Y. and Chen J. Proteomic analysis of Trichoderma atroviride mycelia stressed by organophosphate pesticide dichlorvos. Canadian J Microbiol., 2010, 56, 121-127.
28.    Jun H, Kieselbach T. and Jönsson LJ. Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microbial cell factories, 2011, 10, 68.
29.    Farrell A, Plevin R, Turner B, Jones A, O'hare M. and Kammen D. Ethanol can contribute to energy and environmental goals. Science, 2006, 311, 506-508.
30.    Patel-Predd P. Overcoming the hurdles to producing ethanol from cellulose. ACS Publications: 2006: 1-10.
31.    Martinez D, Berka R, Henrissat B, Saloheimo M, Arvas M, Baker S, Chapman J, Chertkov O, Coutinho P. and Cullen D. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature biotechnol., 2008, 26, 553-560.
32.    Juhasz T.,Szengyel Z, Reczey K, Siika-Aho M. and Viikari L. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Proc Biochemis., 2005, 40, 3519-3525.
33.    Sehnem N, de Bittencourt LR, Camassola M. and Dillon AJ. Cellulase production by Penicillium echinulatum on lactose. Appl Microbiol Biotechnol 2006, 72, 163-167.
34.    Schaffner D. and Toledo R. Cellulase production by Trichoderma reesei when cultured on xylose‐based media supplemented with sorbose. Biotechnol Bioeng., 1991, 37, 12-16.
35.    Kubicek CP, Mikus M, Schuster A, Schmoll M. and Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnology for biofuels, 2009, 2, 1-19.
36.    Bhale U. and Rajkonda J. Enzymatic activity of Trichoderma spp.. Novus Natural Science Research 2012, 1, 1-8.
37.    de Azevedo A, De Marco J. and Felix C. Characterization of an amylase produced by a Trichoderma harzianum isolate with antagonistic activity against Crinipellis perniciosa, the causal agent of witches’ broom of cocoa. FEMS microbiology letters 2000, 188, 171-175.
38.    Buleon A, Colonna P, Planchot V. and Ball S. Starch granules: structure and biosynthesis. Interna J Biological Macromo., 1998, 23, 85-112.
39.    Tester R, Karkalas J. and Qi X. Starch—composition, fine structure and architecture. J cereal sci., 2004, 39, 151-165.
40.    Mehta D. and Satyanarayana T. Bacterial and archaeal α-amylases: diversity and amelioration of the desirable characteristics for industrial applications. Frontiers in Microbiol., 2016, 7, 1129.
41.    Guzmán‐Maldonado H, Paredes‐López O. and Biliaderis CG. Amylolytic enzymes and products derived from starch: a review. Critical Reviews in Food Science and Nutrition 1995, 35, 373-403.
42.    Crabb W. and Mitchinson C. Enzymes involved in the processing of starch to sugars. Trends in Biotechnology 1997, 15, 349-352.
43.    Gopinath S, Anbu P, Lakshmipriya T. and Hilda A. Strategies to characterize fungal lipases for applications in medicine and dairy industry. BioMed Res Interna., 2013: 1-10.
44.    Johri B, Alurralde J. and Klein J. Lipase production by free and immobilized protoplasts of Sporotrichum (Chrysosporium) thermophile Apinis. Appl Microbiol Biotechnol., 1990, 33, 367-371.
45.    Ülker S, Özel A, Çolak A. and Karaoğlu ŞA. Isolation, production, and characterization of an extracellular lipase from Trichoderma harzianum isolated from soil. Turkish J Biol, 2011, 35, 543-550.
46.    Schols H, Geraeds C, Searle-van Leeuwen M, Kormelink F. and Voragen A. Rhamnogalacturonase: a novel enzyme that degrades the hairy regions of pectins. Carbohydrate Res., 1990, 206, 105-115.
47.    Paul N. and Bhattacharyya S. 47—the microbial degumming of raw ramie fibre. J the Textile Institute, 1979, 70, 512-517.
48.    Yadav S, Yadav P, Yadav D. and Yadav K. Purification and characterization of pectin lyase produced by Aspergillus terricola and its application in retting of natural fibers. Appl Biochem Biotechnol., 2009, 159, 270-283.
49.     Adrio JL. and Demain AL. Fungal biotechnology. Int Microbiol., 2003, 6, 191–199.
50.     Elkhateeb WA. (2005). Some mycological, phytopathological and physiological studies on mycobiota of selected newly reclaimed soils in Assiut governorate, Egypt [master thesis]. Assiut, Egypt: Faculty of Science, Assiut University (Doctoral dissertation).
51.     Benítez T, Rincón AM, Limón MC. and Codón AC. Biocontrol mechanisms of Trichoderma strains. Int Microbiol., 2004, 7: 249-260.
52.     Elkhateeb WA, Zohri AA, Mazen M, Hashem M. and Daba GM. Investigation of diversity of endophytic, phylloplane and phyllosphere mycobiota isolated from different cultivated plants in new reclaimed soil, Upper Egypt with potential biological applications, Inter J MediPharm Res., 2016, 2(1): 23-31.
53.     Elkhateeb WA. and Daba GM. Where to Find? A Report for Some Terrestrial Fungal Isolates, and Selected Applications Using Fungal Secondary Metabolites. Biomed J Sci Technol Res., 2018, 4(4): 1-4.
54.     Daba GM, Elkhateeb, WA. and Thomas PW. This era of biotechnological tools: an insight into endophytic mycobiota. Egyptian Pharmaceu J., 2018, 17(3): 121–128.
55.     Abo-elyousr KA, Abdel-hafez SI. and Abdel-rahim IR. (2014). Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. J Phytopathol; 162: 567–574.
56.     Montero-Barrientos M, Hermosa R, Cardoza R, Gutiérrez S. and Monte E. Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl Environ Microbiol., 2011, 77(9), 3009-3016.
57.     Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina I, Viterbo A, Yarden O.  Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl. Environ. Microbiol. 2011, 77(15), 5100-5109.
58.     Verma M, Satinder K, Tyagi R, Surampalli R. and Valèro JR. Antagonistic fungi, Trichoderma spp.: panoply of biological control, Biochem. Eng. J., 37(2007), 1–20.
59.     Marzano M. and Gallo C. Altomare, Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. sp. lycopersici through UV-induced tolerance to fusaric acid, Biol. Control., 67 (2013), 397–408.
60.     Mihov M. and Tringovska I. Energy efficiency improvement of greenhouse tomato production by applying new bio-fertilizers. Bulg J Agric Sci., 2010, 16: 454-458.
61.     Hermosa R, Viterbo A, Chet I. and Monte E. Plant beneficial effects of Trichoderma and of its genes. Microbiol., 2012, 158: 17-25.
62.     Fuentes-Ramirez L. and Caballero-Mellado J. Bacterial bio-fertilizers in PGPR: biocontrol and bio-fertilization, ZA Siddiqui (ed) 2005, pp. 143-172 Springer, Dordrecht, The Netherlands.
63.     Harman GE, Doni F, Khadka RB. and Uphoff N. Endophytic strains of Trichoderma increase plants’ photosynthetic capability. J Appl Microbiol., 2019; 1-10.
64.     Patel J, Teli B, Bajpai R, Meher J, Rashid M, Mukherjee A. and Yadav SK. Trichoderma-mediated biocontrol and growth promotion in plants: An endophytic approach. In Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology (2019, pp. 219-239). Woodhead Publishing.‏
65.     Azarmi, R., Hajieghrari, B. and Giglou, A. Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African J Biotechnol., 2011, 10(31): 5850-5855.‏
66.     Stewart A. and Hill R. Applications of Trichoderma in plant growth promotion. In Biotechnology and biology of Trichoderma (2014, pp. 415-428). Elsevier.‏
67.     Schuster A. and Schmoll M. Biology and biotechnology of Trichoderma. Applied Microbiol Biotechnol., 2010, 87(3): 787-799.‏
68.     Hajieghrari, B. and Mohammadi, M. Growth-promoting activity of indigenous Trichoderma isolates on wheat seed germination, seedling growth and yield. Australian J Crop Sci., 2016, 10(9): 1339.‏
69.     Kamaruzzaman, M. Rahman M, Islam M. and Ahmad MU. Efficacy of four selective Trichoderma isolates as plant growth promoters in two peanut varieties. Inter J Biological Res., 2016, 4(2): 152-156.‏
70.     Mayo S, Gutierrez S, Malmierca MG, Lorenzana A, Campelo MP, Hermosa R. and Casquero PA. Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Frontiers in Plant Science, 2015, 6, 685.
71.     Rao HY, Rakshith D. and Satish S. Antimicrobial properties of endophytic actinomycetes isolated from Combretum latifolium Blume, a medicinal shrub from Western Ghats of India. Frontiers in biology, 2015, 10(6), 528-536.
72.     Saravanakumar K, Yu C, Dou K, Wang M, Li Y, and Chen J. Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biological Control, 2016, 94, 37-46.
73.     Vinale F, Sivasithamparam K, Ghisalberti E, Woo S, Nogro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G. and Lorito M. (). Trichoderma Secondary Metabolites Active on Plants and Fungal Pathogens. The Open Mycol J., 2014, 8, 127-139.
74.     Mari M, Martini C, Spadoni A, Rouissi W. and Bertolini P. Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology and Technology, 2012, 73, 56-62.
75.     Vinale F, Strakowska J, Mazzei P, Piccolo A, Marra R, Lombardi N. and Lorito M.  Cremenolide, a new antifungal, 10-member lactone from Trichoderma cremeum with plant growth promotion activity. Nat Prod Res., 2016, 30(22), 2575-2581.
76.     Van Wees S, Van der Ent S. and Pieterse CM. Plant immune responses triggered by beneficial microbes, Curr. Opin. Plant Biol., 11(2008), 443–448.
77.     Shoresh M, Harman GE. and Mastouri F, Induced systemic resistance and plant responses to fungal biocontrol agents, Annu. Rev. Phytopathol., 48 (2010), 21–43.
78.     Islam MS, Rahman MA, Bulbul SH. and Alam MF. Effect of Trichoderma on seed germination and seedling parameters in chilli, Int. J. Exp. Agric., 2 (2011), 21–26.
79.     Nagaraju A, Sudisha J, Mahadevamurthy S. and Ito S. Seed priming with Trichoderma harzianum isolates enhances plant growth and induces resistance against Plasmopara halstedii, an incident of sunflower downy mildew disease, Aust. J. Plant Pathol. 41 (2012), 609–620.
80.     Jogaiah S, Abdelrahman M. and Tran LS, Ito. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease, J. Exp. Bot. 64 (2013), 3829–3842.
81.     Islam S, Akandaa AM, Sultanab F. and Hossaina M. Chilli rhizosphere fungus Aspergillus spp. PPA1 promotes vegetative growth of cucumber (Cucumis sativus) plants upon root colonization, Arch. Phytopathol. Plant Prot., 47(2013), 1231–1238.
82.     Abdelrahman M, Abdel-Motaal F, El-Sayed M, Jogaiah S, Shigyo M, Ito S. and Trane LP. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science, 246(2016), 128–138.
83.     Soliman MH, Alnusaire TS, Abdelbaky NF, Alayafi AA, Hasanuzzaman M, Rowezak MM, El-Esawi M. and Amr Elkelish A. Trichoderma-induced improvement in growth, photosynthetic pigments, proline, and glutathione levels in Cucurbita pepo seedlings under salt stress. Phyton., 2020, 89(3), 473 – 486.
84.     Elkelish AA, Soliman MH, Alhaithloul HA. and El-Esawi MA. Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. Plant Physiol Biochem., 2019, 137, 144–153.
85.     Rawat L, Singh Y, Shukla N. and Kumar J. (). Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f.sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions. Arch Phytopathol Plant Protec., 2013, 46(12), 1442–1467.
86.     Martínez-Medina A, Roldán A, Albacete A. and Pascual JA. The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochem, 2011, 72(2–3), 223–229.
87.     Hashem A, Abd-Allah EF, Alqarawi AA, Huqail AA. and Egamberdieva D. Alleviation of abiotic salt stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier. J Plant Interac., 2014, 9(1), 857–868.
88.     Viterbo A, Landau U, Kim S, Chernin L. and Chet I. Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett., 2010, 305(1), 42–48.
89.     Brotman Y, Landau U, Cuadros-Inostroza A, Fernie AR. and Chet I. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens, 2013, 9(3), e1003221.
90.     Foyer CH. and Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum, 2003, 119(3), 355–364.
91.     Sallam LR, Abdel- Monem H, El-Refai, Abdel-Hamid A, Hassaan A, El-Minofi, Ibrahim S. and Abdel-Salam. Role of some fermentation parameters on cyclosporin A production by a new isolate of A. terreus. J Gen Appl Microbial., 2003, 49: 321- 28.
92.     Sallam LA, El-Refai AM, Hamdi AH, El-Minofi A. and AbdElsalam. Studies on the applications of immobilization technique for the production of cyclosporin A by a local strain of Aspergillus terreus. J Gen Appl Microbial.; 2005, 51, 143-49.
93.     Park NS, Park HJ, Han K. and Kim ES. Heterologous expression of novel cytochrome P450 hydroxylasegenes from Sebekia benihana. J Microbiol Biotechnol., 2006, 16, 295-98.
94.     Deo YM. and Gaucher GM. Semi-continuous and continuous production of penicillin G by Penicillium chrysogenum cells immobilized in κ-carrageenan beads. Biotechnol Bioeng., 1984, 2, 285-95.
95.     Buntrock RE. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, Edited by Maryadele J. O'Neil, Patricia E. Heckelman, Cherie B. Koch, and Kristin J. Roman. Merck and Co., Inc.: Whitehouse Station, New Jersey, USA, 2007.
96.     Glowacka P, Rudnicka L, Warszawik-Hendzel O, Sikora M, Goldust M, Gajda P, Stochmal A, Blicharz L, Rakowska A. and Olszewska, M. The antiviral properties of cyclosporine. Focus on coronavirus, hepatitis C virus, influenza virus, and human immunodeficiency virus infections. Biology, 2020, 9(8), 192.
97.     Patocka J, Nepovimova E, Kuca K. and Wu W. Cyclosporine A: Chemistry and Toxicity–A Review. Current Medicinal Chemistry. Bentham Science Publishers, 2020.
98.     Riley MR, Kastrup EK. and Hebel SK. Drug facts and comparisons. St Louis: Wolters Kluwer, 2001, 1237.
99.     Gams W. Tolypocladium, eine Hyphomycetengattung mit geschwollenen Phialiden. Persoonia-Molecular Phylogeny and Evolution of Fungi, 1971, 6(2): 185-191.
100.     Dreyfuss M, Härri E, Hofmann H, Kobel H, Pache W. and Tscherter H. Cyclosporin A and C. Euro J Appl Microbiol Biotechnol., 1976, 3(2), 125-133.
101.    Kobel H. and Traber R. Directed biosynthesis of cyclosporines. Euro J Appl Microbiol Biotechnol., 1982, 14(4), 237-240.
102.     Azam A, Anjum T. and Irum W. Trichoderma harzianum: A new fungal source for the production of cyclosporin. Bangladesh J Pharmacol., 2012, 7(1), 33-35.
103.     Anjum T, Azam A. and Irum W. Production of cyclosporine A by submerged fermentation from a local isolate of Penicillium fellutanum. Indian J Pharmaceu Sci., 2012, 74(4), p.372.
104.     Rüegger A, Kuhn M, Lichti H, Loosli H, Huguenin R, Quiquerez C. and von Wartburg A. Cyclosporin A, ein immunsuppressiv wirksamer Peptidmetabolit aus Trichoderma polysporum (Link ex Pers.) Rifai. Helvetica Chimica Acta, 1976, 59(4), 1075-1092.
105.     Poulsen NN, von Brunn A, Hornum M. and Blomberg Jensen M. Cyclosporine and COVID‐19: Risk or favorable?. American J Transplant., 2020, 20(11), 2975-2982.
106.     Rukmana S, Ansori A, Kusala M, Utami U, Wahyudi D, Mandasari A. Molecular Identification of Trichoderma Isolates from Sugarcane Bagasse Based on Internal Transcribed Spacer (ITS) rDNA. Research Journal of Pharmacy and Technology, 2020; 13(7): 3300-3304.‏
107.     Larichev V, Smirnova I, Syatkin S, Myandina G, Chibisov S, Ryskina E. Effects of L-lysine-α-oxidase from Trichoderma in vitro experiments on the model of viruses as Sindbis, tick-borne encephalitis, West nile, Tahyna and Dhori. Research Journal of Pharmacy and Technology, 2017; 10(3): 765-768.‏
108.     Rakovskaya I, Smirnova I, Syatkin S, Myandina G, Chibisov S, Blagonravov M, Skorik A. Anti mycoplasmal activity of the concentrate from Trichoderma. Research Journal of Pharmacy and Technology, 2017; 10(3): 751.‏
109.     Senthilkumar G, Madhanraj P, Panneerselvam A. Studies on DNA extraction, molecular identification and genetic evolution of Trichoderma harzianum. Asian Journal of Research in Chemistry, 2011; 4(8): 1225-1230.‏
110.     Sumithra P, Viji T, Madhanraj P, Nadimuthu N. Ecology and Biocontrol Potential of Soil Fungi of a Backwater Environment along the East Coast of India. Asian Journal of Pharmaceutical Research, 2015; 5(1).
111.     Gunasekaran S, Sundaramoorthy S, Anitha U, Sathiavelu M, Arunachalam S. Endophytic fungi with antioxidant activity-a review. Research Journal of Pharmacy and Technology, 2015; 8(6): 731.‏‏
112.     Gopi K, Jayaprakashvel M. Distribution of Endophytic Fungi in Different Environments and Their Importance. Research Journal of Pharmacy and Technology, 2017; 10(11): 4102-4104.‏
113.    Gopi K, Jayaprakashvel M. Endophytic Fungi as Novel Bioresource for Biomedical Applications. Research Journal of Pharmacy and Technology, 2017; 10(11): 4114-4115.‏

Recomonded Articles:

Author(s): Waill A. Elkhateeb, Marwa O. Elnahas, Ghoson M. Daba, Abdel-Nasser A. Zohri

DOI: 10.52711/0975-4385.2021.00025         Access: Open Access Read More

Author(s): Ramesh D. Ingole, Avinash B. Thalkari, Pawan N. Karwa, Pallavi S. Shinde

DOI: 10.5958/0975-4385.2020.00038.2         Access: Open Access Read More

Author(s): S. Priya, S. Nethaji

DOI:         Access: Open Access Read More


Recent Articles




Tags